Nothing Special   »   [go: up one dir, main page]

Skip to main content

The Impact of Edge Deletions on the Number of Errors in Networks

  • Conference paper
Principles of Distributed Systems (OPODIS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7109))

Included in the following conference series:

Abstract

In this paper, we deal with an error model in distributed networks. For a target t, every node is assumed to give an advice, ie. to point to a neighbour that take closer to the destination. Any node giving a bad advice is called a liar. Starting from a situation without any liar, we study the impact of topology changes on the number of liars.

More precisely, we establish a relationship between the number of liars and the number of distance changes after one edge deletion. Whenever ℓ deleted edges are chosen uniformly at random, for any graph with n nodes, m edges and diameter D, we prove that the expected number of liars and distance changes is \(O(\frac{\ell^2Dn}{m})\) in the resulting graph. The result is tight for ℓ = 1. For some specific topologies, we give more precise bounds.

This work is granted by the european project EULER.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bernstein, A.: Fully dynamic (2 + epsilon) approximate all-pairs shortest paths with fast query and close to linear update time. In: FOCS, pp. 693–702. IEEE Computer Society (2009)

    Google Scholar 

  2. Bernstein, A., Karger, D.R.: A nearly optimal oracle for avoiding failed vertices and edges. In: Mitzenmacher, M. (ed.) STOC, pp. 101–110. ACM (2009)

    Google Scholar 

  3. Chung, F.R.K., Garey, M.R.: Diameter bounds for altered graphs. Journal of Graph Theory 8(4), 511–534 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chechik, S., Langberg, M., Peleg, D., Roditty, L.: f-Sensitivity Distance Oracles and Routing Schemes. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part I. LNCS, vol. 6346, pp. 84–96. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Demetrescu, C., Italiano, G.F.: A new approach to dynamic all pairs shortest paths. J. ACM 51(6), 968–992 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Demetrescu, C., Thorup, M., Chowdhury, R.A., Ramachandran, V.: Oracles for distances avoiding a failed node or link. SIAM J. Comput. 37, 1299–1318 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hanusse, N., Ilcinkas, D., Kosowski, A., Nisse, N.: Locating a Target with an Agent Guided by Unreliable Local Advice. In: Proceedings of the 29th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing PODC 2010, Zurich, Suisse, pp. 355–364. ACM, New York (2010)

    Google Scholar 

  8. Hanusse, N., Kranakis, E., Krizanc, D.: Searching with mobile agents in networks with liars. Discrete Applied Mathematics 137, 69–85 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hanusse, N., Kavvadias, D.J., Kranakis, E., Krizanc, D.: Memoryless search algorithms in a network with faulty advice. Theor. Comput. Sci. 402(2-3), 190–198 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hershberger, J., Suri, S.: Vickrey prices and shortest paths: What is an edge worth? In: FOCS, pp. 252–259 (2001)

    Google Scholar 

  11. Khanna, N., Baswana, S.: Approximate shortest paths avoiding a failed vertex: Optimal size data structures for unweighted graphs. In: Marion, J.-Y., Schwentick, T. (eds.) STACS. LIPIcs, pp. 513–524. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2010)

    Google Scholar 

  12. King, V.: Fully dynamic algorithms for maintaining all-pairs shortest paths and transitive closure in digraphs. In: FOCS, pp. 81–91 (1999)

    Google Scholar 

  13. Kranakis, E., Krizanc, D.: Searching with uncertainty. In: Proc. SIROCCO 1999, pp. 194–203 (1999)

    Google Scholar 

  14. Nardelli, E., Proietti, G., Widmayer, P.: Finding the most vital node of a shortest path. Theor. Comput. Sci. 296, 167–177 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Schoone, A., Bodlaender, H., van Leeuwen, J.: Improved Diameter Bounds for Altered Graphs. In: Tinhofer, G., Schmidt, G. (eds.) WG 1986. LNCS, vol. 246, pp. 227–236. Springer, Heidelberg (1987)

    Chapter  Google Scholar 

  16. Thorup, M.: Fully-Dynamic All-Pairs Shortest Paths: Faster and Allowing Negative Cycles. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 384–396. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Glacet, C., Hanusse, N., Ilcinkas, D. (2011). The Impact of Edge Deletions on the Number of Errors in Networks. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds) Principles of Distributed Systems. OPODIS 2011. Lecture Notes in Computer Science, vol 7109. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25873-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25873-2_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25872-5

  • Online ISBN: 978-3-642-25873-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics