Abstract
In this paper, we deal with an error model in distributed networks. For a target t, every node is assumed to give an advice, ie. to point to a neighbour that take closer to the destination. Any node giving a bad advice is called a liar. Starting from a situation without any liar, we study the impact of topology changes on the number of liars.
More precisely, we establish a relationship between the number of liars and the number of distance changes after one edge deletion. Whenever ℓ deleted edges are chosen uniformly at random, for any graph with n nodes, m edges and diameter D, we prove that the expected number of liars and distance changes is \(O(\frac{\ell^2Dn}{m})\) in the resulting graph. The result is tight for ℓ = 1. For some specific topologies, we give more precise bounds.
This work is granted by the european project EULER.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bernstein, A.: Fully dynamic (2 + epsilon) approximate all-pairs shortest paths with fast query and close to linear update time. In: FOCS, pp. 693–702. IEEE Computer Society (2009)
Bernstein, A., Karger, D.R.: A nearly optimal oracle for avoiding failed vertices and edges. In: Mitzenmacher, M. (ed.) STOC, pp. 101–110. ACM (2009)
Chung, F.R.K., Garey, M.R.: Diameter bounds for altered graphs. Journal of Graph Theory 8(4), 511–534 (1984)
Chechik, S., Langberg, M., Peleg, D., Roditty, L.: f-Sensitivity Distance Oracles and Routing Schemes. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part I. LNCS, vol. 6346, pp. 84–96. Springer, Heidelberg (2010)
Demetrescu, C., Italiano, G.F.: A new approach to dynamic all pairs shortest paths. J. ACM 51(6), 968–992 (2004)
Demetrescu, C., Thorup, M., Chowdhury, R.A., Ramachandran, V.: Oracles for distances avoiding a failed node or link. SIAM J. Comput. 37, 1299–1318 (2008)
Hanusse, N., Ilcinkas, D., Kosowski, A., Nisse, N.: Locating a Target with an Agent Guided by Unreliable Local Advice. In: Proceedings of the 29th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing PODC 2010, Zurich, Suisse, pp. 355–364. ACM, New York (2010)
Hanusse, N., Kranakis, E., Krizanc, D.: Searching with mobile agents in networks with liars. Discrete Applied Mathematics 137, 69–85 (2004)
Hanusse, N., Kavvadias, D.J., Kranakis, E., Krizanc, D.: Memoryless search algorithms in a network with faulty advice. Theor. Comput. Sci. 402(2-3), 190–198 (2008)
Hershberger, J., Suri, S.: Vickrey prices and shortest paths: What is an edge worth? In: FOCS, pp. 252–259 (2001)
Khanna, N., Baswana, S.: Approximate shortest paths avoiding a failed vertex: Optimal size data structures for unweighted graphs. In: Marion, J.-Y., Schwentick, T. (eds.) STACS. LIPIcs, pp. 513–524. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2010)
King, V.: Fully dynamic algorithms for maintaining all-pairs shortest paths and transitive closure in digraphs. In: FOCS, pp. 81–91 (1999)
Kranakis, E., Krizanc, D.: Searching with uncertainty. In: Proc. SIROCCO 1999, pp. 194–203 (1999)
Nardelli, E., Proietti, G., Widmayer, P.: Finding the most vital node of a shortest path. Theor. Comput. Sci. 296, 167–177 (2003)
Schoone, A., Bodlaender, H., van Leeuwen, J.: Improved Diameter Bounds for Altered Graphs. In: Tinhofer, G., Schmidt, G. (eds.) WG 1986. LNCS, vol. 246, pp. 227–236. Springer, Heidelberg (1987)
Thorup, M.: Fully-Dynamic All-Pairs Shortest Paths: Faster and Allowing Negative Cycles. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 384–396. Springer, Heidelberg (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Glacet, C., Hanusse, N., Ilcinkas, D. (2011). The Impact of Edge Deletions on the Number of Errors in Networks. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds) Principles of Distributed Systems. OPODIS 2011. Lecture Notes in Computer Science, vol 7109. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25873-2_26
Download citation
DOI: https://doi.org/10.1007/978-3-642-25873-2_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-25872-5
Online ISBN: 978-3-642-25873-2
eBook Packages: Computer ScienceComputer Science (R0)