Abstract
XCS is a learning classifier system that combines a reinforcement learning scheme with evolutionary algorithms to evolve a population of classifiers in the form of condition-action rules. In this paper, we investigate the effectiveness of XCS in high-dimensional classification problems where the number of features greatly exceeds the number of data instances – common characteristics of microarray gene expression classification tasks. We introduce a new guided rule discovery mechanisms for XCS, inspired by feature selection techniques commonly used in machine learning. The extracted feature quality information is used to bias the evolutionary operators. The performance of the proposed model is compared with the standard XCS model and a number of well-known machine learning algorithms using benchmark binary classification tasks and gene expression data sets. Experimental results suggests that the guided rule discovery mechanism is computationally efficient, and promotes the evolution of more accurate solutions. The proposed model performs significantly better than comparative algorithms when tackling high-dimensional classification problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
UCI Machine Learning Repository, http://archive.ics.uci.edu/ml/
Alon, U., Barkai, N., Notterman, D.A., Gishdagger, K., Ybarradagger, S., Mackdagger, D., Levine, A.J.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. of the National Academy of Sciences of the USA 96, 6745–6750 (1999)
Bacardit, J., Krasnogor, N.: Smart crossover operator with multiple parents for a Pittsburgh learning classifier system. In: Proceedings of the 8th Conference on GECCO, pp. 1441–1448. ACM (2006)
Bonilla Huerta, E., Hernández Hernández, J.C., Hernández Montiel, L.A.: A New Combined Filter-Wrapper Framework for Gene Subset Selection with Specialized Genetic Operators. In: Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Kittler, J. (eds.) MCPR 2010. LNCS, vol. 6256, pp. 250–259. Springer, Heidelberg (2010), http://dx.doi.org/10.1007/978-3-642-15992-3_27
Butz, M., Pelikan, M., Lloral, X., Goldberg, D.E.: Automated global structure extraction for effective local building block processing in XCS. Evolutionary Computation 14(3), 345–380 (2006)
Butz, M.V., Goldberg, D.E., Tharakunnel, K.: Analysis and improvement of fitness exploitation in XCS: bounding models, tournament selection, and bilateral accuracy. Evol. Comput. 11, 239–277 (2003)
Butz, M.V., Wilson, S.W.: An Algorithmic Description of XCS. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2000. LNCS (LNAI), vol. 1996, pp. 253–274. Springer, Heidelberg (2001)
Fernandndez, A., Garcianda, S., Luengo, J., Bernado-Mansilla, E., Herrera, F.: Genetics-based machine learning for rule induction: State of the art, taxonomy, and comparative study. IEEE Transactions on Evolutionary Computation 14(6), 913–941 (2010)
Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999)
Hedenfalk, I., Duggan, D., Chen, Y., Radmacher, M., Bittner, M., Simon, R., Meltzer, P., Gusterson, B., Esteller, M., Kallioniemi, O.P., Wilfond, B., Borg, A., Trent, J.: Gene-Expression profiles in hereditary breast cancer. N. Engl. J. Med. 344(8), 539–548 (2001)
Isabelle Guyon, M.N., Gunn, S., Zadeh, L. (eds.): Feature Extraction, Foundations and Applications. Springer, Heidelberg (2006)
Jose-Revuelta, L.M.S.: A Hybrid GA-TS Technique with Dynamic Operators and its Application to Channel Equalization and Fiber Tracking. I-Tech Education and Publishing (2008)
Lanzi, P.L.: A Study of the Generalization Capabilities of XCS. In: Bäck, T. (ed.) Proceedings of the 7th International Conference on Genetic Algorithms, pp. 418–425. Morgan Kaufmann (1997)
Liu, H., Motoda, H.: Computational Methods of Feature Selection. Data Mining and Knowledge Discovery Series. Chapman & Hall/CRC (2007)
Moore, J.H., White, B.C.: Exploiting Expert Knowledge in Genetic Programming for Genome-Wide Genetic Analysis. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 969–977. Springer, Heidelberg (2006)
Morales-Ortigosa, S., Orriols-Puig, A., Bernadó-Mansilla, E.: New Crossover Operator for Evolutionary Rule Discovery in XCS. In: 8th International Conference on Hybrid Intelligent Systems, pp. 867–872. IEEE Computer Society (2008)
Morales-Ortigosa, S., Orriols-Puig, A., Bernadó-Mansilla, E.: Analysis and improvement of the genetic discovery component of XCS. In: International Joint Conference on Hybrid Intelligent Systems, vol. 6, pp. 81–95 (April 2009)
Orriols-Puig, A., Casillas, J., Bernadó-Mansilla, E.: Genetic-based machine learning systems are competitive for pattern recognition. Evolutionary Intelligence 1, 209–232 (2065), doi:10.1007/s12065-008-0013-9
Singh, D., Febbo, P.G., Ross, K., Jackson, D.G., Manola, J., Ladd, C., Tamayo, P., Renshaw, A.A.: Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1, 203–209 (2002)
Wang, P., Weise, T., Chiong, R.: Novel evolutionary algorithms for supervised classification problems: an experimental study. Evolutionary Intelligence 4(1), 3–16 (2011)
Wilson, S.W.: Classifier Fitness Based on Accuracy. Evolutionary Computation 3(2), 149–175 (1995), http://prediction-dynamics.com/
Wilson, S.W.: Get Real! XCS with Continuous-Valued Inputs. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 1999. LNCS (LNAI), vol. 1813, pp. 209–222. Springer, Heidelberg (2000)
Wu, F.-X., Zhang, W., Kusalik, A.: On Determination of Minimum Sample Size for Discovery of Temporal Gene Expression Patterns. In: First International Multi-Symposiums on Computer and Computational Sciences, pp. 96–103 (2006)
Zhang, Y., Rajapakse, J.C.: Machine Learning in Bioinformatics, 1st edn. Wiley Series in Bioinformatics (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Abedini, M., Kirley, M. (2011). Guided Rule Discovery in XCS for High-Dimensional Classification Problems. In: Wang, D., Reynolds, M. (eds) AI 2011: Advances in Artificial Intelligence. AI 2011. Lecture Notes in Computer Science(), vol 7106. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25832-9_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-25832-9_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-25831-2
Online ISBN: 978-3-642-25832-9
eBook Packages: Computer ScienceComputer Science (R0)