Nothing Special   »   [go: up one dir, main page]

Skip to main content

Guided Rule Discovery in XCS for High-Dimensional Classification Problems

  • Conference paper
AI 2011: Advances in Artificial Intelligence (AI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7106))

Included in the following conference series:

Abstract

XCS is a learning classifier system that combines a reinforcement learning scheme with evolutionary algorithms to evolve a population of classifiers in the form of condition-action rules. In this paper, we investigate the effectiveness of XCS in high-dimensional classification problems where the number of features greatly exceeds the number of data instances – common characteristics of microarray gene expression classification tasks. We introduce a new guided rule discovery mechanisms for XCS, inspired by feature selection techniques commonly used in machine learning. The extracted feature quality information is used to bias the evolutionary operators. The performance of the proposed model is compared with the standard XCS model and a number of well-known machine learning algorithms using benchmark binary classification tasks and gene expression data sets. Experimental results suggests that the guided rule discovery mechanism is computationally efficient, and promotes the evolution of more accurate solutions. The proposed model performs significantly better than comparative algorithms when tackling high-dimensional classification problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. UCI Machine Learning Repository, http://archive.ics.uci.edu/ml/

  2. Alon, U., Barkai, N., Notterman, D.A., Gishdagger, K., Ybarradagger, S., Mackdagger, D., Levine, A.J.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. of the National Academy of Sciences of the USA 96, 6745–6750 (1999)

    Article  Google Scholar 

  3. Bacardit, J., Krasnogor, N.: Smart crossover operator with multiple parents for a Pittsburgh learning classifier system. In: Proceedings of the 8th Conference on GECCO, pp. 1441–1448. ACM (2006)

    Google Scholar 

  4. Bonilla Huerta, E., Hernández Hernández, J.C., Hernández Montiel, L.A.: A New Combined Filter-Wrapper Framework for Gene Subset Selection with Specialized Genetic Operators. In: Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Kittler, J. (eds.) MCPR 2010. LNCS, vol. 6256, pp. 250–259. Springer, Heidelberg (2010), http://dx.doi.org/10.1007/978-3-642-15992-3_27

    Chapter  Google Scholar 

  5. Butz, M., Pelikan, M., Lloral, X., Goldberg, D.E.: Automated global structure extraction for effective local building block processing in XCS. Evolutionary Computation 14(3), 345–380 (2006)

    Article  Google Scholar 

  6. Butz, M.V., Goldberg, D.E., Tharakunnel, K.: Analysis and improvement of fitness exploitation in XCS: bounding models, tournament selection, and bilateral accuracy. Evol. Comput. 11, 239–277 (2003)

    Article  Google Scholar 

  7. Butz, M.V., Wilson, S.W.: An Algorithmic Description of XCS. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2000. LNCS (LNAI), vol. 1996, pp. 253–274. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  8. Fernandndez, A., Garcianda, S., Luengo, J., Bernado-Mansilla, E., Herrera, F.: Genetics-based machine learning for rule induction: State of the art, taxonomy, and comparative study. IEEE Transactions on Evolutionary Computation 14(6), 913–941 (2010)

    Article  Google Scholar 

  9. Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999)

    Article  Google Scholar 

  10. Hedenfalk, I., Duggan, D., Chen, Y., Radmacher, M., Bittner, M., Simon, R., Meltzer, P., Gusterson, B., Esteller, M., Kallioniemi, O.P., Wilfond, B., Borg, A., Trent, J.: Gene-Expression profiles in hereditary breast cancer. N. Engl. J. Med. 344(8), 539–548 (2001)

    Article  Google Scholar 

  11. Isabelle Guyon, M.N., Gunn, S., Zadeh, L. (eds.): Feature Extraction, Foundations and Applications. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  12. Jose-Revuelta, L.M.S.: A Hybrid GA-TS Technique with Dynamic Operators and its Application to Channel Equalization and Fiber Tracking. I-Tech Education and Publishing (2008)

    Google Scholar 

  13. Lanzi, P.L.: A Study of the Generalization Capabilities of XCS. In: Bäck, T. (ed.) Proceedings of the 7th International Conference on Genetic Algorithms, pp. 418–425. Morgan Kaufmann (1997)

    Google Scholar 

  14. Liu, H., Motoda, H.: Computational Methods of Feature Selection. Data Mining and Knowledge Discovery Series. Chapman & Hall/CRC (2007)

    Google Scholar 

  15. Moore, J.H., White, B.C.: Exploiting Expert Knowledge in Genetic Programming for Genome-Wide Genetic Analysis. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 969–977. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Morales-Ortigosa, S., Orriols-Puig, A., Bernadó-Mansilla, E.: New Crossover Operator for Evolutionary Rule Discovery in XCS. In: 8th International Conference on Hybrid Intelligent Systems, pp. 867–872. IEEE Computer Society (2008)

    Google Scholar 

  17. Morales-Ortigosa, S., Orriols-Puig, A., Bernadó-Mansilla, E.: Analysis and improvement of the genetic discovery component of XCS. In: International Joint Conference on Hybrid Intelligent Systems, vol. 6, pp. 81–95 (April 2009)

    Google Scholar 

  18. Orriols-Puig, A., Casillas, J., Bernadó-Mansilla, E.: Genetic-based machine learning systems are competitive for pattern recognition. Evolutionary Intelligence 1, 209–232 (2065), doi:10.1007/s12065-008-0013-9

    Article  Google Scholar 

  19. Singh, D., Febbo, P.G., Ross, K., Jackson, D.G., Manola, J., Ladd, C., Tamayo, P., Renshaw, A.A.: Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1, 203–209 (2002)

    Article  Google Scholar 

  20. Wang, P., Weise, T., Chiong, R.: Novel evolutionary algorithms for supervised classification problems: an experimental study. Evolutionary Intelligence 4(1), 3–16 (2011)

    Article  Google Scholar 

  21. Wilson, S.W.: Classifier Fitness Based on Accuracy. Evolutionary Computation 3(2), 149–175 (1995), http://prediction-dynamics.com/

    Article  Google Scholar 

  22. Wilson, S.W.: Get Real! XCS with Continuous-Valued Inputs. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 1999. LNCS (LNAI), vol. 1813, pp. 209–222. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  23. Wu, F.-X., Zhang, W., Kusalik, A.: On Determination of Minimum Sample Size for Discovery of Temporal Gene Expression Patterns. In: First International Multi-Symposiums on Computer and Computational Sciences, pp. 96–103 (2006)

    Google Scholar 

  24. Zhang, Y., Rajapakse, J.C.: Machine Learning in Bioinformatics, 1st edn. Wiley Series in Bioinformatics (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Abedini, M., Kirley, M. (2011). Guided Rule Discovery in XCS for High-Dimensional Classification Problems. In: Wang, D., Reynolds, M. (eds) AI 2011: Advances in Artificial Intelligence. AI 2011. Lecture Notes in Computer Science(), vol 7106. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25832-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25832-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25831-2

  • Online ISBN: 978-3-642-25832-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics