Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Rule Based Approach to Group Recommender Systems

  • Conference paper
Multi-disciplinary Trends in Artificial Intelligence (MIWAI 2011)

Abstract

The problem of building Recommender Systems has attracted considerable attention in recent years, but most recommender systems are designed for recommending items for individuals. In this paper we develop a content based group recommender system that can recommend TV shows to a group of users. We propose a method that uses decision list rule learner (DLRL) based on Ripper to learn the rule base from user viewing history and a method called RTL strategy based on social choice theory strategies to generate group ratings. We compare our learning algorithm with the existing C4.5 rule learner and the experimental results show that the performance of our rule learner is better in terms of literals learned (size of the rule set) and our rule learner takes time that is linear to the number of training examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chen, Y.L., Cheng, L.-C., Chuang, C.N.: A group recommendation system with consideration of interactions among group members. Expert Syst. Appl. 34(3), 2082–2090 (2008)

    Article  Google Scholar 

  2. Cohen, W.W.: Fast effective rule induction. In: ICML, pp. 115–123 (1995)

    Google Scholar 

  3. Cole, J.J., Gray, M.J., Lloyd, J.W., Ng, K.S.: Personalisation for user agents. In: AAMAS 2005, Utrecht, The Netherlands, pp. 603–610 (2005)

    Google Scholar 

  4. de Campos, L.M., Luna, J.M., Huete, J.F., Morales, M.A.: Group recommending: A methodological approach based on bayesian networks. In: ICDE Workshops, pp. 835–844 (2007)

    Google Scholar 

  5. Fürnkranz, J.: Separate-and-conquer rule learning. Artificial Intelligence Review 13(1), 3–54 (1999)

    Article  MATH  Google Scholar 

  6. Gutta, S., Kurapati, K., Lee, K.P., Martino, J., Milanski, J., Schaffer, J., Zimmerman, J.: Tv content recommender system. In: AAAI/IAAI, Austin, USA, July 30- August 3, pp. 1121–1122 (2000)

    Google Scholar 

  7. Hogg, L., Jennings, N.R.: Variable Sociability in Agent-Based Decision Making. In: Jennings, N.R. (ed.) ATAL 1999. LNCS, vol. 1757, pp. 305–318. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  8. Masthoff, J.: Group modeling: Selecting a sequence of television items to suit a group of viewers. User Model. User-Adapt. Interact. 14(1), 37–85 (2004)

    Article  Google Scholar 

  9. McCarthy, J.F., Anagnost, T.D.: Musicfx: An arbiter of group preferences for computer aupported collaborative workouts. In: CSCW, pp. 363–372 (1998)

    Google Scholar 

  10. McCarthy, K., Salamó, M., Coyle, L., McGinty, L., Smyth, B., Nixon, P.: Group recommender systems: a critiquing based approach. In: International Conference on Intelligent User Interfaces, Australia, January 29- February 1, pp. 267–269 (2006)

    Google Scholar 

  11. Mitchell, T.M.: Machine Learning. McGraw Hill, USA (1997)

    MATH  Google Scholar 

  12. O’Connor, M., Cosley, D., Konstan, J.A., Riedl, J.: Polylens: A recommender system for groups of user. In: ECSCW, Germany, pp. 199–218 (September 2001)

    Google Scholar 

  13. Pazzani, M.J., Billsus, D.: Content-Based Recommendation Systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 325–341. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Quinlan, J.R.: Learning logical definitions from relations. Machine Learning 5, 239–266 (1990)

    Google Scholar 

  15. Rivest, R.L.: Learning decision lists. Machine Learning 2(3), 229–246 (1987)

    Google Scholar 

  16. Tubio, R., Sotelo, R., Blanco, Y., Lopez, M., Gil, A., Pazos, J., Ramos, M.: A tv-anytime metadata approach to tv program recommendation for groups. In: Consumer Electronics, ISCE, pp. 1–3 (April 2008)

    Google Scholar 

  17. Yu, Z., Zhou, X., Hao, Y., Gu, J.: Tv program recommendation for multiple viewers based on user profile merging. User Model. User-Adapt. Interact. 16(1), 63–82 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Padmanabhan, V., Seemala, S.K., Bhukya, W.N. (2011). A Rule Based Approach to Group Recommender Systems. In: Sombattheera, C., Agarwal, A., Udgata, S.K., Lavangnananda, K. (eds) Multi-disciplinary Trends in Artificial Intelligence. MIWAI 2011. Lecture Notes in Computer Science(), vol 7080. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25725-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25725-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25724-7

  • Online ISBN: 978-3-642-25725-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics