Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Hybrid Fish Swarm Optimisation Algorithm for Solving Examination Timetabling Problems

  • Conference paper
Learning and Intelligent Optimization (LION 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6683))

Included in the following conference series:

Abstract

A hybrid fish swarm algorithm has been proposed to solve exam timetabling problems where the movement of the fish is simulated when searching for food inside water (refer as a search space). The search space is categorised into three categories which are crowded, not crowded and empty areas. The movement of fish (where the fish represents the solution) is determined based on a Nelder-Mead simplex search algorithm. The quality of the solution is enhanced using a great deluge algorithm or a steepest descent algorithm. The proposed hybrid approach is tested on a set of benchmark examination timetabling problems in comparison with a set of state-of-the-art methods from the literature. The experimental results show that the proposed hybrid approach is able to produce promising results for the test problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abdullah, S., Burke, E.K.: A Multi-start large neighbourhood search approach with local search methods for examination timetabling. In: International Conference on Automated Planning and Scheduling (ICAPS 2006), Cumbria, UK, pp. 334–337 (2006)

    Google Scholar 

  2. Abdullah, S., Shaker, K., McCollum, B., McMullan, P.: Dual sequence simulated annealing with round-robin approach for university course timetabling. In: Cowling, P., Merz, P. (eds.) EvoCOP 2010. LNCS, vol. 6022, pp. 1–10. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Turabieh, H., Abdullah, S.: An integrated hybrid approach to the examination timetabling problem. OMEGA (2011), doi:10.1016/j.omega.2010.12.005

    Google Scholar 

  4. Burke, E.K., Bykov, Y.: Solving exam timetabling problems with the flex-deluge algorithm. In: Burke, E.K., Rudová, H. (eds.) PATAT 2007. LNCS, vol. 3867, pp. 370–372. Springer, Heidelberg (2007) ISBN: 80-210-3726-1

    Chapter  Google Scholar 

  5. Burke, E.K., Eckersley, A.J., McCollum, B., Petrovic, S., Qu, R.: Hybrid variable neighbourhood approaches to university exam timetabling. European Journal of Operational Research 206, 46–53 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Burke, E.K., Kingston, J., de Werra, D.: Applications to timetabling. In: Gross, J., Yellen, J. (eds.) Handbook of Graph Theory, pp. 445–474. Chapman Hall/CRC Press (2004)

    Google Scholar 

  7. Caramia, M., Dell’Olmo, P., Italiano, G.F.: New algorithms for examination timetabling. In: Näher, S., Wagner, D. (eds.) WAE 2000. LNCS, vol. 1982, pp. 230–241. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  8. Carter, M.W., Laporte, G., Lee, S.: Examination timetabling: Algorithmic strategies and applications. Journal of the Operational Research Society 47(3), 373–383 (1996)

    Article  Google Scholar 

  9. Carter, M.W.: A survey of practical applications of examination timetabling algorithms. Operations Research 34(2), 193–202 (1986)

    Article  MathSciNet  Google Scholar 

  10. Casey, S., Thompson, J.: GRASPing the examination scheduling problem. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 232–244. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Côté, P., Wong, T., Sabourin, R.: A hybrid multi-objective evolutionary algorithm for the uncapacitated exam proximity problem. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 294–312. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Dowsland, K., Thompson, J.: Ant colony optimization for the examination scheduling problem. Journal of the Operational Research Society 56(4), 426–438 (2005)

    Article  MATH  Google Scholar 

  13. Dueck, G.: New Optimization Heuristics. The great deluge algorithm and the record-to-record travel. Journal of Computational Physics 104, 86–92 (1993)

    Article  MATH  Google Scholar 

  14. Fernandes, E.M.G.P., Martins, T.F.M.C., Rocha, A.M.A.C.: Fish Swarm Intelligent Algorithm for Bound Constrained Global Optimization. In: Proceedings of the International Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE 2009, June 30 , July 1-3 (2009)

    Google Scholar 

  15. Fox, M.S., Sadeh-Koniecpol, N.: Why is scheduling so difficult? A csp perspective. In: Proceedings of the European Conference on Artificial Intelligence, pp. 754–767 (1990)

    Google Scholar 

  16. Gao, S., Yang, J.Y.: Swarm intelligence algorithms and applications. China Waterpower Press, Beijing (2006)

    Google Scholar 

  17. Gaspero, L.D., Schaerf, A.: Tabu search techniques for examination timetabling. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 104–117. Springer, Heidelberg (2001)

    Google Scholar 

  18. Jiang, M., Mastorakis, N., Yuan, D., Lagunas, M.A.: Image segmentation with improved artificial fish swarm algorithm. In: Mastorakis, N., Mladenov, V., Kontargyri, V.T. (eds.) Proceedings of the European Computing Conference. Lecture Notes in Electrical Engineering, vol. 28, pp. 133–138. Springer, Heidelberg (2009) ISBN: 978-0-387-84818-1

    Chapter  Google Scholar 

  19. Jiang, M., Wang, Y., Pfletschinger, S., Lagunas, M.A., Yuan, D.: Optimal multiuser detection with artificial fish swarm algorithm. In: Huang, D.-S., Heutte, L., Loog, M. (eds.) ICIC 2007. CCIS, vol. 2, pp. 1084–1093. Springer, Heidelberg (2007)

    Google Scholar 

  20. Lewis, R.: A survey of metaheuristic-based techniques for university timetabling problems. OR Spectrum 30(1), 167–190 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, X.L., Shao, Z.J., Qian, J.X.: An optimizing method based on autonomous animate: fish swarm algorithm. System Engineering Theory and Practice 11, 32–38 (2002)

    Google Scholar 

  22. Malim, M.R., Khader, A.T., Mustafa, A.: Artificial immune algorithms for university. In: Burke, E.K., Rudová, H. (eds.) PATAT 2007. LNCS, vol. 3867, pp. 234–245. Springer, Heidelberg (2007)

    Google Scholar 

  23. McCollum, B.: A perspective on bridging the gap between theory and practice in university timetabling. In: Burke, E.K., Rudová, H. (eds.) PATAT 2007. LNCS, vol. 3867, pp. 3–23. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  24. Merlot, L.T.G., Boland, N., Hughes, B.D., Stuckey, P.J.: A Hybrid Algorithm for the Examination Timetabling Problem. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 207–231. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  25. Nelder, J.A., Mead, R.: A simplex method for function minimization. Computer Journal 7, 308–313 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  26. Petrovic, S., Burke, E.K.: Chapter 45: University timetabling. In: Leung, J. (ed.) Handbook of Scheduling: Algorithms Models and Performance Analysis. CRC Press, Boca Raton (2004)

    Google Scholar 

  27. Qu, R., Burke, E.K., McCollum, B.: Adaptive automated construction of hybrid heuristics for exam timetabling and graph colouring problems. European Journal of Operational Research (EJOR) 198(2), 392–404 (2009)

    Article  MATH  Google Scholar 

  28. Qu, R., Burke, E.K.: Hybridisations within a graph based hyper-heuristic framework for university timetabling problems. Journal of Operational Research Society (JORS) 60, 1273–1285 (2009)

    Article  MATH  Google Scholar 

  29. Qu, R., Burke, E.K., McCollum, B., Merlot, L.T.G., Lee, S.Y.: A survey of search methodologies and automated system development for examination timetabling. Journal of scheduling, 55–89 (2009)

    Google Scholar 

  30. Sadeh, N., Kaujnunn, M.: Micro-opportunistic scheduling: The micro-boss factory scheduler. In: Intelligent Scheduling, pp. 99–135. Morgan Kaufmann, San Francisco (1994)

    Google Scholar 

  31. Schaerf, A.: A survey of automated timetabling. Artificial Intelligence Review 13(2), 87–127 (1999)

    Article  Google Scholar 

  32. Wang, C.-R., Zhou, C.-L., Ma, J.-W.: An improved artificial fish swarm algorithm and its application in feed-forward neural networks. In: Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, pp. 2890–2894 (2005)

    Google Scholar 

  33. Wang, X., Gao, N., Cai, S., Huang, M.: An Artificial Fish Swarm Algorithm Based and ABC Supported QoS Unicast Routing Scheme in NGI. In: Min, G., Di Martino, B., Yang, L.T., Guo, M., Rünger, G. (eds.) ISPA Workshops 2006. LNCS, vol. 4331, pp. 205–214. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  34. Yang, Y., Petrovic, S.: A Novel Similarity Measure for Heuristic Selection in Examination Timetabling. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 247–269. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Turabieh, H., Abdullah, S. (2011). A Hybrid Fish Swarm Optimisation Algorithm for Solving Examination Timetabling Problems. In: Coello, C.A.C. (eds) Learning and Intelligent Optimization. LION 2011. Lecture Notes in Computer Science, vol 6683. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25566-3_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25566-3_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25565-6

  • Online ISBN: 978-3-642-25566-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics