Abstract
A hybrid fish swarm algorithm has been proposed to solve exam timetabling problems where the movement of the fish is simulated when searching for food inside water (refer as a search space). The search space is categorised into three categories which are crowded, not crowded and empty areas. The movement of fish (where the fish represents the solution) is determined based on a Nelder-Mead simplex search algorithm. The quality of the solution is enhanced using a great deluge algorithm or a steepest descent algorithm. The proposed hybrid approach is tested on a set of benchmark examination timetabling problems in comparison with a set of state-of-the-art methods from the literature. The experimental results show that the proposed hybrid approach is able to produce promising results for the test problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abdullah, S., Burke, E.K.: A Multi-start large neighbourhood search approach with local search methods for examination timetabling. In: International Conference on Automated Planning and Scheduling (ICAPS 2006), Cumbria, UK, pp. 334–337 (2006)
Abdullah, S., Shaker, K., McCollum, B., McMullan, P.: Dual sequence simulated annealing with round-robin approach for university course timetabling. In: Cowling, P., Merz, P. (eds.) EvoCOP 2010. LNCS, vol. 6022, pp. 1–10. Springer, Heidelberg (2010)
Turabieh, H., Abdullah, S.: An integrated hybrid approach to the examination timetabling problem. OMEGA (2011), doi:10.1016/j.omega.2010.12.005
Burke, E.K., Bykov, Y.: Solving exam timetabling problems with the flex-deluge algorithm. In: Burke, E.K., Rudová, H. (eds.) PATAT 2007. LNCS, vol. 3867, pp. 370–372. Springer, Heidelberg (2007) ISBN: 80-210-3726-1
Burke, E.K., Eckersley, A.J., McCollum, B., Petrovic, S., Qu, R.: Hybrid variable neighbourhood approaches to university exam timetabling. European Journal of Operational Research 206, 46–53 (2010)
Burke, E.K., Kingston, J., de Werra, D.: Applications to timetabling. In: Gross, J., Yellen, J. (eds.) Handbook of Graph Theory, pp. 445–474. Chapman Hall/CRC Press (2004)
Caramia, M., Dell’Olmo, P., Italiano, G.F.: New algorithms for examination timetabling. In: Näher, S., Wagner, D. (eds.) WAE 2000. LNCS, vol. 1982, pp. 230–241. Springer, Heidelberg (2001)
Carter, M.W., Laporte, G., Lee, S.: Examination timetabling: Algorithmic strategies and applications. Journal of the Operational Research Society 47(3), 373–383 (1996)
Carter, M.W.: A survey of practical applications of examination timetabling algorithms. Operations Research 34(2), 193–202 (1986)
Casey, S., Thompson, J.: GRASPing the examination scheduling problem. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 232–244. Springer, Heidelberg (2003)
Côté, P., Wong, T., Sabourin, R.: A hybrid multi-objective evolutionary algorithm for the uncapacitated exam proximity problem. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 294–312. Springer, Heidelberg (2005)
Dowsland, K., Thompson, J.: Ant colony optimization for the examination scheduling problem. Journal of the Operational Research Society 56(4), 426–438 (2005)
Dueck, G.: New Optimization Heuristics. The great deluge algorithm and the record-to-record travel. Journal of Computational Physics 104, 86–92 (1993)
Fernandes, E.M.G.P., Martins, T.F.M.C., Rocha, A.M.A.C.: Fish Swarm Intelligent Algorithm for Bound Constrained Global Optimization. In: Proceedings of the International Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE 2009, June 30 , July 1-3 (2009)
Fox, M.S., Sadeh-Koniecpol, N.: Why is scheduling so difficult? A csp perspective. In: Proceedings of the European Conference on Artificial Intelligence, pp. 754–767 (1990)
Gao, S., Yang, J.Y.: Swarm intelligence algorithms and applications. China Waterpower Press, Beijing (2006)
Gaspero, L.D., Schaerf, A.: Tabu search techniques for examination timetabling. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 104–117. Springer, Heidelberg (2001)
Jiang, M., Mastorakis, N., Yuan, D., Lagunas, M.A.: Image segmentation with improved artificial fish swarm algorithm. In: Mastorakis, N., Mladenov, V., Kontargyri, V.T. (eds.) Proceedings of the European Computing Conference. Lecture Notes in Electrical Engineering, vol. 28, pp. 133–138. Springer, Heidelberg (2009) ISBN: 978-0-387-84818-1
Jiang, M., Wang, Y., Pfletschinger, S., Lagunas, M.A., Yuan, D.: Optimal multiuser detection with artificial fish swarm algorithm. In: Huang, D.-S., Heutte, L., Loog, M. (eds.) ICIC 2007. CCIS, vol. 2, pp. 1084–1093. Springer, Heidelberg (2007)
Lewis, R.: A survey of metaheuristic-based techniques for university timetabling problems. OR Spectrum 30(1), 167–190 (2008)
Li, X.L., Shao, Z.J., Qian, J.X.: An optimizing method based on autonomous animate: fish swarm algorithm. System Engineering Theory and Practice 11, 32–38 (2002)
Malim, M.R., Khader, A.T., Mustafa, A.: Artificial immune algorithms for university. In: Burke, E.K., Rudová, H. (eds.) PATAT 2007. LNCS, vol. 3867, pp. 234–245. Springer, Heidelberg (2007)
McCollum, B.: A perspective on bridging the gap between theory and practice in university timetabling. In: Burke, E.K., Rudová, H. (eds.) PATAT 2007. LNCS, vol. 3867, pp. 3–23. Springer, Heidelberg (2007)
Merlot, L.T.G., Boland, N., Hughes, B.D., Stuckey, P.J.: A Hybrid Algorithm for the Examination Timetabling Problem. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 207–231. Springer, Heidelberg (2003)
Nelder, J.A., Mead, R.: A simplex method for function minimization. Computer Journal 7, 308–313 (1965)
Petrovic, S., Burke, E.K.: Chapter 45: University timetabling. In: Leung, J. (ed.) Handbook of Scheduling: Algorithms Models and Performance Analysis. CRC Press, Boca Raton (2004)
Qu, R., Burke, E.K., McCollum, B.: Adaptive automated construction of hybrid heuristics for exam timetabling and graph colouring problems. European Journal of Operational Research (EJOR) 198(2), 392–404 (2009)
Qu, R., Burke, E.K.: Hybridisations within a graph based hyper-heuristic framework for university timetabling problems. Journal of Operational Research Society (JORS) 60, 1273–1285 (2009)
Qu, R., Burke, E.K., McCollum, B., Merlot, L.T.G., Lee, S.Y.: A survey of search methodologies and automated system development for examination timetabling. Journal of scheduling, 55–89 (2009)
Sadeh, N., Kaujnunn, M.: Micro-opportunistic scheduling: The micro-boss factory scheduler. In: Intelligent Scheduling, pp. 99–135. Morgan Kaufmann, San Francisco (1994)
Schaerf, A.: A survey of automated timetabling. Artificial Intelligence Review 13(2), 87–127 (1999)
Wang, C.-R., Zhou, C.-L., Ma, J.-W.: An improved artificial fish swarm algorithm and its application in feed-forward neural networks. In: Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, pp. 2890–2894 (2005)
Wang, X., Gao, N., Cai, S., Huang, M.: An Artificial Fish Swarm Algorithm Based and ABC Supported QoS Unicast Routing Scheme in NGI. In: Min, G., Di Martino, B., Yang, L.T., Guo, M., Rünger, G. (eds.) ISPA Workshops 2006. LNCS, vol. 4331, pp. 205–214. Springer, Heidelberg (2006)
Yang, Y., Petrovic, S.: A Novel Similarity Measure for Heuristic Selection in Examination Timetabling. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 247–269. Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Turabieh, H., Abdullah, S. (2011). A Hybrid Fish Swarm Optimisation Algorithm for Solving Examination Timetabling Problems. In: Coello, C.A.C. (eds) Learning and Intelligent Optimization. LION 2011. Lecture Notes in Computer Science, vol 6683. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25566-3_42
Download citation
DOI: https://doi.org/10.1007/978-3-642-25566-3_42
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-25565-6
Online ISBN: 978-3-642-25566-3
eBook Packages: Computer ScienceComputer Science (R0)