Nothing Special   »   [go: up one dir, main page]

Skip to main content

Hierarchical Hidden Conditional Random Fields for Information Extraction

  • Conference paper
Learning and Intelligent Optimization (LION 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6683))

Included in the following conference series:

  • 5385 Accesses

Abstract

Hidden Markov Models (HMMs) are very popular generative models for time series data. Recent work, however, has shown that for many tasks Conditional Random Fields (CRFs), a type of discriminative model, perform better than HMMs. Information extraction is the task of automatically extracting instances of specified classes or relations from text. A method for information extraction using Hierarchical Hidden Markov Models (HHMMs) has already been proposed. HHMMs, a generalization of HMMs, are generative models with a hierarchical state structure. In previous research, we developed the Hierarchical Hidden Conditional Random Field (HHCRF), a discriminative model corresponding to HHMMs. In this paper, we propose information extraction using HHCRFs, and then compare the performance of HHMMs and HHCRFs through an experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: Proc. 18th Int. Conf. Machine Learning (2001)

    Google Scholar 

  2. Fine, S., Singer, Y., Tishby, N.: The hierarchical hidden Markov model: Analysis and applications. Machine Learning 32(1) (1998)

    Google Scholar 

  3. Murphy, K., Paskin, M.: Linear time inference in hierarchical HMMs. In: Advances in Neural Information Processing Systems, vol. 14 (2001)

    Google Scholar 

  4. Sugiura, T., Goto, N., Hayashi, A.: A discriminative model corresponding to hierarchical hMMs. In: Yin, H., Tino, P., Corchado, E., Byrne, W., Yao, X. (eds.) IDEAL 2007. LNCS, vol. 4881, pp. 375–384. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Tamada, H., Hayashi, A.: Sports video segmentation using a hierarchical hidden CRF. In: Köppen, M., Kasabov, N., Coghill, G. (eds.) ICONIP 2008. LNCS, vol. 5506, pp. 715–722. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Skounakis, M., Craven, M., Ray, S.: Hierarchical hidden Markov models for information extraction. In: Proc. 18th Int. Joint Conf. Artificial Intelligence (2003)

    Google Scholar 

  7. Huang, C., Darwiche, A.: Inference in belief networks: A procedural guide. Int. J. of Approximate Reasoning 15(3) (1996)

    Google Scholar 

  8. Scheffer, T., Decomain, C., Wrobel, S.: Active hidden markov models for information extraction. In: Hoffmann, F., Adams, N., Fisher, D., Guimarães, G., Hand, D.J. (eds.) IDA 2001. LNCS, vol. 2189, p. 309. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  9. Cestnik, B.: Estimating probabilities. In: Proc. 9th European Conf. Artificial Intelligence (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kaneko, S., Hayashi, A., Suematsu, N., Iwata, K. (2011). Hierarchical Hidden Conditional Random Fields for Information Extraction. In: Coello, C.A.C. (eds) Learning and Intelligent Optimization. LION 2011. Lecture Notes in Computer Science, vol 6683. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25566-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25566-3_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25565-6

  • Online ISBN: 978-3-642-25566-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics