Abstract
Hidden Markov Models (HMMs) are very popular generative models for time series data. Recent work, however, has shown that for many tasks Conditional Random Fields (CRFs), a type of discriminative model, perform better than HMMs. Information extraction is the task of automatically extracting instances of specified classes or relations from text. A method for information extraction using Hierarchical Hidden Markov Models (HHMMs) has already been proposed. HHMMs, a generalization of HMMs, are generative models with a hierarchical state structure. In previous research, we developed the Hierarchical Hidden Conditional Random Field (HHCRF), a discriminative model corresponding to HHMMs. In this paper, we propose information extraction using HHCRFs, and then compare the performance of HHMMs and HHCRFs through an experiment.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: Proc. 18th Int. Conf. Machine Learning (2001)
Fine, S., Singer, Y., Tishby, N.: The hierarchical hidden Markov model: Analysis and applications. Machine Learning 32(1) (1998)
Murphy, K., Paskin, M.: Linear time inference in hierarchical HMMs. In: Advances in Neural Information Processing Systems, vol. 14 (2001)
Sugiura, T., Goto, N., Hayashi, A.: A discriminative model corresponding to hierarchical hMMs. In: Yin, H., Tino, P., Corchado, E., Byrne, W., Yao, X. (eds.) IDEAL 2007. LNCS, vol. 4881, pp. 375–384. Springer, Heidelberg (2007)
Tamada, H., Hayashi, A.: Sports video segmentation using a hierarchical hidden CRF. In: Köppen, M., Kasabov, N., Coghill, G. (eds.) ICONIP 2008. LNCS, vol. 5506, pp. 715–722. Springer, Heidelberg (2009)
Skounakis, M., Craven, M., Ray, S.: Hierarchical hidden Markov models for information extraction. In: Proc. 18th Int. Joint Conf. Artificial Intelligence (2003)
Huang, C., Darwiche, A.: Inference in belief networks: A procedural guide. Int. J. of Approximate Reasoning 15(3) (1996)
Scheffer, T., Decomain, C., Wrobel, S.: Active hidden markov models for information extraction. In: Hoffmann, F., Adams, N., Fisher, D., Guimarães, G., Hand, D.J. (eds.) IDA 2001. LNCS, vol. 2189, p. 309. Springer, Heidelberg (2001)
Cestnik, B.: Estimating probabilities. In: Proc. 9th European Conf. Artificial Intelligence (1990)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kaneko, S., Hayashi, A., Suematsu, N., Iwata, K. (2011). Hierarchical Hidden Conditional Random Fields for Information Extraction. In: Coello, C.A.C. (eds) Learning and Intelligent Optimization. LION 2011. Lecture Notes in Computer Science, vol 6683. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25566-3_14
Download citation
DOI: https://doi.org/10.1007/978-3-642-25566-3_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-25565-6
Online ISBN: 978-3-642-25566-3
eBook Packages: Computer ScienceComputer Science (R0)