Abstract
Several main practical tasks, important for effective pre-processing of multichannel remote sensing (RS) images, are considered in order to reliably retrieve useful information from them and to provide availability of data to potential users. First, possible strategies of data processing are discussed. It is shown that one problem is to use more adequate models to describe the noise present in real images. Another problem is automation of all or, at least, several stages of data processing, like determination of noise type and its statistical characteristics, noise filtering and image compression before applying classification at the final stage. Second, some approaches that are effective and are able to perform well enough within automatic or semi-automatic frameworks for multichannel images are described and analyzed. The applicability of the proposed methods is demonstrated for particular examples of real RS data classification.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aiazzi, B., Baronti, S., Lastri, C., Santurri, L., Alparone, L.: Low complexity lossless/near-lossless compression of hyperspectral imagery through classified linear spectral prediction. In: Proceedings of IGARSS, p. 4 (2005)
Christophe, E.: Hyperspectral Data Compression Tradeoff. In: Prasad, S., et al. (eds.) Optical Remote Sensing. Advances in Signal Processing and Exploitation Techniques Series: Augmented Vision and Reality, vol. 3, pp. 9–30. Springer, Heidelberg (2011)
Chang, C.-I. (ed.): Hyperspectral Data Exploitation: Theory and Applications. Wiley-Interscience (2007)
Kulemin, G.P., Zelensky, A.A., Astola, J.T., Lukin, V.V., Egiazarian, K.O., Kurekin, A.A., Ponomarenko, N.N., Abramov, S.K., Tsymbal, O.V., Goroshko, Y.A., Tarnavsky, Y.V.: Methods and Algorithms for Pre-processing and Classification of Multichannel Radar Remote Sensing Images, TTY Monistamo, Tampere, Finland. TICSP Series, vol. 28, p. 116 (2004)
Lukin, V.V., Abramov, S.K., Ponomarenko, N.N., Uss, M.L., Zriakhov, M., Vozel, B., Chehdi, K., Astola, J.T.: Methods and automatic procedures for processing images based on blind evaluation of noise type and characteristics. SPIE Journal of Applied Remote Sensing 5, 53502 (2011)
Mielikäinen, J.: Lossless compression of hyperspectral images using lookup tables. IEEE Signal Processing Letters 13, 157–160 (2006)
Lukin, V., Ponomarenko, N., Kurekin, A., Lever, K., Pogrebnyak, O., Fernandez, L.P.S.: Approaches to Classification of Multichannel Images. In: Martínez-Trinidad, J.F., Carrasco Ochoa, J.A., Kittler, J. (eds.) CIARP 2006. LNCS, vol. 4225, pp. 794–803. Springer, Heidelberg (2006)
García-Vílchez, F., Muñoz-Marí, J., Zortea, M., Blanes, I., González-Ruiz, V., Camps-Valls, G., Plaza, A., Serra-Sagristà, J.: On the Impact of Lossy Compression on Hyperspectral Image Classification and Unmixing. IEEE Geoscience and Remote Sensing Letters 8(2), 253–257 (2011)
Fevralev, D.V., Lukin, V.V., Ponomarenko, N.N., Vozel, B., Chehdi, K., Kurekin, A., Shark, L.: Classification of filtered multichannel images. In: Bruzzone, L. (ed.) Proc. of SPIE, Image and Signal Processing for Remote Sensing XVI, vol. 7830, p. 78300M (2010)
Ponomarenko, N., Lukin, V., Zriakhov, M., Kaarna, A., Astola, J.: An automatic approach to lossy compression of AVIRIS images. In: Proceedings of IGARSS, Spain, pp. 472–475 (2007)
Ponomarenko, N., Lukin, V., Zriakhov, M., Kaarna, A., Astola, J.: Automatic approaches to on-board/on-land lossy compression of AVIRIS images. In: Proceedings of IGARSS, Boston, USA, p. 4 (2008)
Ponomarenko, N., Zriakhov, M., Lukin, V., Kaarna, A.: Improved Grouping and Noise Cancellation for Automatic Lossy Compression of AVIRIS Images. In: Blanc-Talon, J., Bone, D., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2010, Part II. LNCS, vol. 6475, pp. 261–271. Springer, Heidelberg (2010)
Ponomarenko, N., Lukin, V., Zriakhov, M., Egiazarian, K., Astola, J.: Estimation of accesible quality in noisy image compression. In: Proceedings of EUSIPCO, Florence, Italy, p. 4 (2006)
Foi, A.: Pointwise Shape-Adaptive DCT Image Filtering and Signal-Dependent Noise Estimation, Thesis for the degree of Doctor of Technology, Tampere University of Technology, Tampere, Finland (2007), http://dspace.cc.tut.fi/dpub/handle/123456789/115
Sendur, L., Selesnick, I.W.: Bivariate shrinkage functions for wavelet based denoising exploiting interscale dependency. IEEE Transactions on Signal Processing 50(11), 2744–2756 (2002)
Oktem, R., Egiazarian, K., Lukin, V.V., Ponomarenko, N.N., Tsymbal, O.V.: Locally adaptive DCT filtering for signal-dependent noise removal. EURASIP Journal on Advances in Signal Processing 2007, 10 (2007)
Lukin, V.V., Oktem, R., Ponomarenko, N., Egiazarian, K.: Image filtering based on discrete cosine transform. Telecommunications and Radio Engineering 66(18), 1685–1701 (2007)
Ponomarenko, N., Lukin, V., Egiazarian, K., Astola, J.: DCT Based High Quality Image Compression. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) SCIA 2005. LNCS, vol. 3540, pp. 1177–1185. Springer, Heidelberg (2005)
Ponomarenko, N.N., Lukin, V.V., Egiazarian, K., Astola, J.: ADCTC: a new high quality DCT based coder for lossy image compression. In: CD ROM Proceedings of LNLA, p. 6 (2008)
Al-Chaykh, O.K., Mersereau, R.M.: Lossy compression of noisy images. IEEE Transactions on Image Processing 7(12), 1641–1652 (1998)
Lukin, V., Ponomarenko, N., Zriakhov, M., Zelensky, A., Egiazarian, K., Astola, J.: Quasi-optimal compression of noisy optical and radar images. In: Proceedings of SPIE Conf. Image and Signal Processing for Remote Sensing XII, Sweden, vol. 6365 (2006)
Ponomarenko, N., Krivenko, S., Lukin, V., Egiazarian, K.: Lossy Compression of Noisy Images Based on Visual Quality: A Comprehensive Study. EURASIP Journal on Advances in Signal Processing, 13 (2010)
Christophe, E., Leger, D., Mailhes, C.: Quality criteria benchmark for hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing 43(9), 2103–2114 (2005)
Bose, N.K., Liang, P.: Neural network fundamentals with graphs, algorithms and applications. McGraw-Hill (1996)
Schölkopf, B., Burges, J.C., Smola, A.J.: Advances in Kernel Methods: Support Vector Learning. MIT Press, Cambridge (1999)
Ponomarenko, N.N., Lukin, V.V., Zelensky, A.A., Koivisto, P.T., Egiazarian, K.O.: 3D DCT Based Filtering of Color and Multichannel Images. Telecommunications and Radio Engineering 67, 1369–1392 (2008)
Barducci, A., Guzzi, D., Marcoinni, P., Pippi, I.: CHRIS-Proba performance evaluation: signal-to-noise ratio, instrument efficiency and data quality from acquisitions over San Rossore (Italy) test site. In: Proceedings of the 3rd ESA CHRIS/Proba Workshop, Italy, p. 11 (2005)
Uss, M., Vozel, B., Lukin, V., Chehdi, K.: Local Signal-Dependent Noise Variance Estimation from Hyperspectral Textural Images. IEEE Journal of Selected Topics in Signal Processing 5(2) (in print, 2011)
Lukin, V., Krivenko, S., Zriakhov, M., Ponomarenko, N., Abramov, S., Kaarna, A., Egiazarian, K.: Lossy compression of images corrupted by mixed Poisson and additive noise. In: Proceedings of LNLA, Helsinki, pp. 33–40 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lukin, V., Ponomarenko, N., Kurekin, A., Pogrebnyak, O. (2011). Processing and Classification of Multichannel Remote Sensing Data. In: Batyrshin, I., Sidorov, G. (eds) Advances in Soft Computing. MICAI 2011. Lecture Notes in Computer Science(), vol 7095. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25330-0_43
Download citation
DOI: https://doi.org/10.1007/978-3-642-25330-0_43
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-25329-4
Online ISBN: 978-3-642-25330-0
eBook Packages: Computer ScienceComputer Science (R0)