Abstract
One of the concerns of humanity today is developing strategies for saving energy, because we need to reduce energetic costs and promote economical, political and environmental sustainability. As we have mentioned before, in recent times one of the main priorities is energy management. The goal in this project is to develop a system that will be able to find optimal configurations in energy savings through management light. In this paper a comparison between Genetic Algorithms (GA) and Bee Swarm Optimization (BSO) is made. These two strategies are focus on lights management, as the main scenario, and taking into account the activity of the users, size of area, quantity of lights, and power. It was found that the GA provides an optimal configuration (according to the user’s needs), and this result was consistent with Wilcoxon’s Test.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Zelkha, E., Epstein, B.B.: From Devices to Ambient Intelligence: The Transformation of Consumer Electronics. In: Digital Living Room Conference (1998)
ISTAG Scenarios for Ambient Intelligence in Compiled by Ducatel, K., M.B. 2010 (2011)
Sulaiman, F., Ahmad, A.: Automated Fuzzy Logic Light Balanced Control Algorithm Implemented in Passive Optical Fiber Daylighting System (2006)
Boman, M., Davidsson, P., Skarmeas, N., Clark, K.: Energy saving and added customer value in intelligent buildings. In: Third International Conference on the Practical Application of Intelligent Agents and Multi-Agent Technology (1998)
Akkermans, J., Ygge, F.: Homebots: Intelligent decentralized services for energy management. Ergon Verlag (1996)
Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. University of Michigan Press (1975)
Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: Proceedings of IEEE International Conference on Neural Networks (1995)
Pham, D., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S.: The bees algorithm–a novel tool for complex optimisation problems. In: Proc 2nd Int Virtual Conf. on Intelligent Production Machines and Systems (IPROMS 2006), pp. 454–459 (2006)
Nieto, J.: Algoritmos basados en cúmulos de partículas para la resolución de problemas complejos (2006)
Sotelo-Figueroa, M.A., Baltazar, R., Carpio, M.: Application of the Bee Swarm Optimization BSO to the Knapsack Problem. In: Melin, P., Kacprzyk, J., Pedrycz, W. (eds.) Soft Computing for Recognition Based on Biometrics. SCI, vol. 312, pp. 191–206. Springer, Heidelberg (2010), doi:10.1007/978-3-642-15111-8_12 ISBN: 978-3-642-15110-1
Sotelo-Figueroa, M.A., del Rosario Baltazar-Flores, M., Carpio, J.M., Zamudio, V.: A Comparation between Bee Swarm Optimization and Greedy Algorithm for the Knapsack Problem with Bee Reallocation. In: 2010 Ninth Mexican International Conference on Artificial Intelligence (MICAI), November 8-13, pp. 22–27 (2010), doi: 10.1109/MICAI.2010.32
Sotelo-Figueroa, M., Baltazar, R., Carpio, M.: Application of the Bee Swarm Optimization BSO to the Knapsack Problem. Journal of Automation, Mobile Robotics & Intelligent Systems (JAMRIS) 5 (2011)
Haupt, R.L.: Practical Genetic Algorithms (2004)
Hernández, J. L. (s.f.): Web de Tecnología Eléctrica. Obtenido de Web de Tecnología Eléctrica, http://www.tuveras.com/index.html
Fernandez, J.G. (s.f.): EDISON, Aprendizaje Basado en Internet. Obtenido de EDISON, Aprendizaje Basado en Internet, http://edison.upc.edu/
Woolson, R.: Wilcoxon Signed-Rank Test. Wiley Online Library (1998)
Laszlo, C.: Lighting Design & Asoc. (n.d.). Manual de luminotecnia para interiores. retrieved from Manual de luminotecnia para interiores, http://www.laszlo.com.ar/manual.htm
Sotelo-Figueroa, M.A.: Aplicacion de Metahueristicas en el Knapsack Problem (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Romero-Rodríguez, W.J.G., Zamudio Rodríguez, V.M., Baltazar Flores, R., Sotelo-Figueroa, M.A., Alcaraz, J.A.S. (2011). Comparative Study of BSO and GA for the Optimizing Energy in Ambient Intelligence. In: Batyrshin, I., Sidorov, G. (eds) Advances in Soft Computing. MICAI 2011. Lecture Notes in Computer Science(), vol 7095. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25330-0_16
Download citation
DOI: https://doi.org/10.1007/978-3-642-25330-0_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-25329-4
Online ISBN: 978-3-642-25330-0
eBook Packages: Computer ScienceComputer Science (R0)