Nothing Special   »   [go: up one dir, main page]

Skip to main content

Hamiltonian Orthogeodesic Alternating Paths

  • Conference paper
Combinatorial Algorithms (IWOCA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7056))

Included in the following conference series:

Abstract

Given a set of red and blue points, an orthogeodesic alternating path is a path such that each edge is a geodesic orthogonal chain connecting points of different colour and no two edges cross. We consider the problem of deciding whether there exists a Hamiltonian orthogeodesic alternating path, i.e., an orthogeodesic alternating path visiting all points. We provide an O(n log2 n)-time algorithm for finding such a path if no two points are horizontally or vertically aligned. We show that the problem is NP-hard if bends must be at grid points. Nevertheless, we can approximate the maximum number of vertices of an orthogeodesic alternating path on the grid by roughly a factor of 3. Finally, we consider the problem of finding orthogeodesic alternating matchings, cycles, and trees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abellanas, M., García, A., Hurtado, F., Tejel, J.: Caminos alternantes (in Spanish). In: X Encuentros de Geometría Computacional, Sevilla, Spanish, pp. 7–12 (2003)

    Google Scholar 

  2. Abellanas, M., Garcia-Lopez, J., Hernández-Peñalver, G., Noy, M., Ramos, P.A.: Bipartite embeddings of trees in the plane. Discrete Applied Mathematics 93(2-3), 141–148 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Akiyama, J., Urrutia, J.: Simple alternating path problem. Discr. Math. 84(1), 101–103 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chazelle, B.: Functional approach to data structures and its use in multidimensional searching. SIAM J. Comput. 17, 427–462 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cibulka, J., Kynčl, J., Mészáros, V., Stolař, R., Valtr, P.: Hamiltonian Alternating Paths on Bicolored Double-Chains. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 181–192. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory of NP-Completeness. W.H. Freeman and Company (1979)

    Google Scholar 

  7. Kaneko, A., Kano, M., Suzuki, K.: Path coverings of two sets of points in the plane. In: Pach, J. (ed.) Towards a Theory of Geometric Graphs, vol. 342, pp. 99–111. American Mathematical Society (2004)

    Google Scholar 

  8. Kaneko, A., Kano, M., Yoshimoto, K.: Alternating Hamilton cycles with minimum number of crossings in the plane. Int. J. Comput. Geometry Appl. 10(1), 73–78 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kano, M.: Discrete geometry on red and blue points on the plane lattice. In: Proc. of JCCGG 2009, pp. 30–33 (2009)

    Google Scholar 

  10. Katz, B., Krug, M., Rutter, I., Wolff, A.: Manhattan-Geodesic Embedding of Planar Graphs. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 207–218. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Kynčl, J., Pach, J., Tóth, G.: Long alternating paths in bicolored point sets. Discrete Mathematics 308(19), 4315–4321 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Merino, C., Salazar, G., Urrutia, J.: On the length of longest alternating paths for multicoloured point sets in convex position. Discrete Mathematics 306(15), 1791–1797 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Di Giacomo, E., Grilli, L., Krug, M., Liotta, G., Rutter, I. (2011). Hamiltonian Orthogeodesic Alternating Paths. In: Iliopoulos, C.S., Smyth, W.F. (eds) Combinatorial Algorithms. IWOCA 2011. Lecture Notes in Computer Science, vol 7056. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25011-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25011-8_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25010-1

  • Online ISBN: 978-3-642-25011-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics