Abstract
This paper presents a method of multistep speaker recognition using naive Bayesian inference and competitive associative nets (CAN2s). We have been examining a method of speaker recognition using feature vectors of pole distribution extracted by the bagging CAN2, where the CAN2 is a neural net for learning piecewise linear approximation of nonlinear function, and bagging CAN2 is the bagging (bootstrap aggregating) version. In order to reduce the recognition error, we formulate a multistep recognition using naive Bayesian inference. After introducing several modifications for reasonable recognition, we show the effectiveness of the present method by means of sereral experiments using real speech signals.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ahalt, A.C., Krishnamurthy, A.K., Chen, P., Melton, D.E.: Competitive learning algorithms for vector quantization. Neural Networks 3, 277–290 (1990)
Kohonen, T.: Associative Memory. Springer, Heidelberg (1977)
Kurogi, S., Ueno, T., Sawa, M.: A batch learning method for competitive associative net and its application to function approximation. In: Proc. SCI 2004, vol. V, pp. 24–28 (2004)
Kurogi, S., Nedachi, N., Funatsu, Y.: Reproduction and recognition of vowel signals using single and bagging competitive associative nets. In: Ishikawa, M., Doya, K., Miyamoto, H., Yamakawa, T. (eds.) ICONIP 2007, Part II. LNCS, vol. 4985, pp. 40–49. Springer, Heidelberg (2008)
Kurogi, S.: Improving generalization performance via out-of-bag estimate using variable size of bags. J. Japanese Neural Network Society 16(2), 81–92 (2009)
Kurogi, S., Sato, S., Ichimaru, K.: Speaker recognition using pole distribution of speech signals obtained by bagging CAN2. In: Leung, C.S., Lee, M., Chan, J.H. (eds.) ICONIP 2009. LNCS, vol. 5863, pp. 622–629. Springer, Heidelberg (2009)
Kurogi, S., Mineishi, S., Sato, S.: An analysis of speaker recognition using bagging CAN2 and pole distribution of speech signals. In: Wong, K.W., Mendis, B.S.U., Bouzerdoum, A. (eds.) ICONIP 2010, Part I. LNCS, vol. 6443, pp. 363–370. Springer, Heidelberg (2010)
Zhang, H.: The optimality of naive Bayes. In: Proc. FLAIRS 2004 Conference (2004)
Campbell, J.P.: Speaker Recognition: A Tutorial. Proc. the IEEE 85(9), 1437–1462 (1997)
Furui, S.: Speaker Recognition. In: Cole, R., Mariani, J., et al. (eds.) Survey of the state of the art in human language technology, pp. 36–42. Cambridge University Press (1998)
Hasan, M.R., Jamil, M., Rabbani, M.G., Rahman, M.S.: Speaker identification using Mel frequency cepstral coefficients. In: Proc. ICECE 2004, pp. 565–568 (2004)
Bocklet, T., Shriberg, E.: Speaker recognition using syllable-based constraints for cepstral frame selection. In: Proc. ICASSP (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kurogi, S., Mineishi, S., Tsukazaki, T., Nishida, T. (2011). Naive Bayesian Multistep Speaker Recognition Using Competitive Associative Nets. In: Lu, BL., Zhang, L., Kwok, J. (eds) Neural Information Processing. ICONIP 2011. Lecture Notes in Computer Science, vol 7062. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24955-6_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-24955-6_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24954-9
Online ISBN: 978-3-642-24955-6
eBook Packages: Computer ScienceComputer Science (R0)