Abstract
This paper reports a novel knowledge-based Question Answering (QA) method with the use of Semantic Web technologies and textual entailment recognition. Different from most of ontology-driven QA methods, this method does not perform deep question analysis to transform a natural language question into an ontology-compliant query for answer retrieval. Instead, it performs textual entailment recognition to discover the question template entailed by a user question from the whole machine-generated set and then takes the associated SPARQL query template to produce the complete query for retrieving the answers from the Semantic Web data that subscribe to the same ontology. An evaluation was carried out to assess the accuracy of the QA method, and the results revealed that the generated question templates can cover almost all the user questions and 65.6% of the user questions can be correctly answered with the support of a semantic entailment engine.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Mollá, D., Vicedo, J.: Question answering in restricted domains: An overview. Computational Linguistics 33(1), 41–61 (2007)
Dagan, I., Glickman, O., Magnini, B.: The PASCAL Recognising Textual Entailment Challenge. In: Quiñonero-Candela, J., Dagan, I., Magnini, B., d’Alché-Buc, F. (eds.) MLCW 2005. LNCS (LNAI), vol. 3944, pp. 177–190. Springer, Heidelberg (2006)
Kouylekov, M., Negri, M., Magnini, B., Coppola, B.: Towards entailment-based question answering: ITC-irst at CLEF 2006. In: Peters, C., Clough, P., Gey, F.C., Karlgren, J., Magnini, B., Oard, D.W., de Rijke, M., Stempfhuber, M. (eds.) CLEF 2006. LNCS, vol. 4730, pp. 526–536. Springer, Heidelberg (2007)
Androutsopoulos, I., Ritchie, G.D., Thanisch, P.: Natural language interfaces to databases—an introduction. Natural Language Engineering 1(1), 29–81 (1995)
Lopez, V., Uren, V., Sabou, M., Motta, E.: Is Question Answering fit for the Semantic Web? a Survey. Semantic Web–Interoperability, Usability, Applicability (in press, 2011)
Atzeni, P., Basili, R., Hansen, D.H., Missier, P., Paggio, P., Pazienza, M.T., Zanzotto, F.M.: Ontology-based Question Answering in a Federation of University Sites: the MOSES Case Study. In: Meziane, F., Métais, E. (eds.) NLDB 2004. LNCS, vol. 3136, pp. 413–420. Springer, Heidelberg (2004)
Lopez, V., et al.: AquaLog: An ontology-driven Question Answering System for organizational Semantic intranets. Journal of Web Semantics 5(2), 72–105 (2007)
Lopez, V., Nikolov, A., Sabou, M., Uren, V., Motta, E., d’Aquin, M.: Scaling up Question-Answering to Linked Data. In: Cimiano, P., Pinto, H.S. (eds.) EKAW 2010. LNCS, vol. 6317, pp. 193–210. Springer, Heidelberg (2010)
Tartir, S., Arpinar, I.B.: Question Answering in Linked Data for Scientific Exploration. In: 2nd Annual Web Science Conference (2010)
Ou, S., et al.: Development & Alignment of a Domain-Specific Ontology for Question Answering. In: 6th International Conference on Language Recourses and Evaluation, ELRA (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ou, S., Zhu, Z. (2011). An Entailment-Based Question Answering System over Semantic Web Data. In: Xing, C., Crestani, F., Rauber, A. (eds) Digital Libraries: For Cultural Heritage, Knowledge Dissemination, and Future Creation. ICADL 2011. Lecture Notes in Computer Science, vol 7008. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24826-9_39
Download citation
DOI: https://doi.org/10.1007/978-3-642-24826-9_39
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24825-2
Online ISBN: 978-3-642-24826-9
eBook Packages: Computer ScienceComputer Science (R0)