Nothing Special   »   [go: up one dir, main page]

Skip to main content

Robust Optic-Flow Estimation with Bayesian Inference of Model and Hyper-parameters

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6667))

Abstract

Selecting optimal models and hyper-parameters is crucial for accurate optic-flow estimation. This paper solves the problem in a generic variational Bayesian framework. The method is based on a conditional model linking the image intensity function, the velocity field and the hyper-parameters characterizing the motion model. Inference is performed at three levels by considering maximum a posteriori problem of marginalized probabilities. We assessed the performance of the proposed method on image sequences of fluid flows and of the “Middlebury” database. Experiments prove that applying the proposed inference strategy on very simple models yields better results than manually tuning smoothing parameters or discontinuity preserving cost functions of classical state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jaynes, E.T.: Bayesian methods: General background (1986)

    Google Scholar 

  2. Molina, R., Katsaggelos, A.K., Mateos, J.: Bayesian and regularization methods for hyperparameter estimation in image restoration. IEEE Trans. Image Processing 8, 231–246 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. MacKay, D.J.C.: Bayesian interpolation. Neural Computation 4, 415–447 (1992)

    Article  MATH  Google Scholar 

  4. Krajsek, K., Mester, R.: Bayesian model selection for optical flow estimation. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 142–151. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Nir, T., Bruckstein, A.M., Kimmel, R.: Over-parameterized variational optical flow. Int. J. Comput. Vision 76, 205–216 (2008)

    Article  Google Scholar 

  6. Heas, P., Memin, E., Heitz, D., Mininni, P.: Bayesian selection of scaling laws for motion modeling in images. In: International Conference on Computer Vision (ICCV 2009), Kyoto, Japan (2009)

    Google Scholar 

  7. Liu, T., Shen, L.: Fluid flow and optical flow. Journal of Fluid Mechanics 614, 253 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Horn, B., Schunck, B.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)

    Article  Google Scholar 

  9. Black, M., Anandan, P.: The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields. Computer Vision and Image Understanding 63, 75–104 (1996)

    Article  Google Scholar 

  10. Geman, D., Reynolds, G.: Constrained restoration and the recovery of discontinuities. IEEE Trans. Pattern Anal. Mach. Intell. 14, 367–383 (1992)

    Article  Google Scholar 

  11. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Operations Research. Springer, New York (1999)

    Book  MATH  Google Scholar 

  12. Bruhn, A., Weickert, J., Kohlberger, T., Schnorr, C.: A multigrid platform for real-time motion computation with discontinuity-preserving variational methods. International Journal of Computer Vision 70, 257–277 (2006)

    Article  Google Scholar 

  13. Jordan, M.I., Ghahramani, Z., Jaakkola, T.S., Saul, L.: An introduction to variational methods for graphical models. Machine Learning 37, 183–233 (1999)

    Article  MATH  Google Scholar 

  14. Sun, D., Roth, S., Lewis, J.P., Black, M.J.: Learning optical flow. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 83–97. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Noels, N., Steendam, H., Moeneclaey, M.: The true cramer-rao bound for phase-independent carrier frequency estimation from a psk signal. In: IEEE Global Telecommunications Conference 2002, pp. 1137–1141 (2002)

    Google Scholar 

  16. Yuan, J., Schnoerr, C., Memin, E.: Discrete orthogonal decomposition and variational fluid flow estimation. Journ. of Math. Imaging & Vison 28, 67–80 (2007)

    Article  MathSciNet  Google Scholar 

  17. Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M., Szeliski, R.: A database and evaluation methodology for optical flow. In: Int. Conf. on Comp. Vis., ICCV 2007 (2007)

    Google Scholar 

  18. Carlier, J., Wieneke, B.: Report 1 on production and diffusion of fluid mechanics images and data. Fluid project deliverable 1.2 (2005), http://www.fluid.irisa.fr

  19. Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereovision. In: Int. Joint Conf. on Artificial Intel. (IJCAI), pp. 674–679 (1981)

    Google Scholar 

  20. Zitnick, C., Jojic, N., Kang, S.B.: Consistent segmentation for optical flow estimation. In: Tenth IEEE International Conference on Computer Vision (ICCV 2005), vol. 2, pp. 1308–1315 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Héas, P., Herzet, C., Mémin, E. (2012). Robust Optic-Flow Estimation with Bayesian Inference of Model and Hyper-parameters. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2011. Lecture Notes in Computer Science, vol 6667. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24785-9_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24785-9_65

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24784-2

  • Online ISBN: 978-3-642-24785-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics