Abstract
In this paper, we present a stochastic interpretation of the motion estimation problem. The usual optical flow constraint equation (assuming that the points keep their brightness along time), embed for instance within a Lucas-Kanade estimator, can indeed be seen as the minimization of a stochastic process under some strong constraints. These constraints can be relaxed by imposing a weaker temporal assumption on the luminance function and also in introducing anisotropic intensity-based uncertainty assumptions. The amplitude of these uncertainties are jointly computed with the unknown velocity at each point of the image grid. We propose different versions depending on the various hypothesis assumed for the luminance function. The substitution of our new observation terms on a simple Lucas-Kanade estimator improves significantly the quality of the results. It also enables to extract an uncertainty connected to quality of the motion field.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M., Szeliski, R.: A database and evaluation methodology for optical flow. In: Int. Conf. on Comp. Vis. (2007)
Barron, J., Fleet, D., Beauchemin, S.: Performance of optical flow techniques. Int. J. Comput. Vis. 12(1), 43–77 (1994)
Barron, J.L., Fleet, D.J., Beauchemin, S.S., Burkitt, T.A.: Performance of optical flow techniques. Int. J. of Comp. Vis. 12(1), 43–77 (1994)
Black, M., Anandan, P.: Robust incremental optical flow. In: Eklundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 800, pp. 296–302. Springer, Heidelberg (1994)
Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004)
Bruhn, A., Weickert, J., Kohlberger, T., Schnoerr, C.: A multigrid platform for real-time motion computation with discontinuity-preserving variational methods. Int. J. Com. Vis. 70(3), 257–277 (2006)
Cassisa, C., Simoens, S., Prinet, V.: Two-frame optical flow formulation in an unwarping multiresolution scheme. In: Bayro-Corrochano, E., Eklundh, J.-O. (eds.) CIARP 2009. LNCS, vol. 5856, pp. 790–797. Springer, Heidelberg (2009)
Corpetti, T., Mémin, E., Pérez, P.: Dense estimation of fluid flows. IEEE Trans. Pattern Anal. Machine Intell. 24(3), 365–380 (2002)
Fitzpatrick, J.: The existence of geometrical density-image transformations corresponding to object motion. Com. Vis., Grap., Im. Proc. 44(2), 155–174 (1988)
Galvin, B., McCane, B., Novins, K., Mason, D., Mills, S.: Recovering motion fields: an analysis of eight optical flow algorithms. In: Proc. British Mach. Vis. Conf., Southampton (1998)
Heitz, D., Mémin, E., Schnoerr, C.: Variational fluid flow measurements from image sequences: synopsis and perspectives. Exp. Fluids 48(3), 369–393 (2010)
Horn, B., Schunck, B.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)
Lempitsky, V., Roth, S., Rother, C.: Fusionflow: Discrete-continuous optimization for optical flow estimation. In: IEEE Comp. Vis. Patt. Rec. (2008)
Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereovision. In: Int. Joint Conf. on Art. Int., pp. 674–679 (1981)
Mémin, E., Pérez, P.: Dense estimation and object-based segmentation of the optical flow with robust techniques. IEEE Trans. Im. Proc. 7(5), 703–719 (1998)
Nagel, H.: Extending the oriented smoothness constraint into the temporal domain and the estimation of derivatives of optical flow. In: Faugeras, O. (ed.) ECCV 1990. LNCS, vol. 427, pp. 139–148. Springer, Heidelberg (1990)
Nesi, P.: Variational approach to optical flow estimation managing discontinuities. Image and Vision Computing 11(7), 419–439 (1993)
Oksendal, B.: Stochastic differential equations. Spinger, Heidelberg (1998)
Papenberg, N., Bruhn, A., Brox, T., Didas, S., Weickert, J.: Highly accurate optic flow computation with theoretically justified warping. Int. J. Comput. Vision 67(2), 141–158 (2006)
Schunck, B.: The image flow constraint equation. Com. Vis., Grap., Im. Proc. 35, 20–46 (1986)
Sun, D., Roth, S., Black, M.: Secrets of optical flow estimation and their principles. In: Proc. IEEE Com. Vis. and Pat. Rec., CVPR 2010, pp. 2432–2439 (2010)
Tretiak, O., Pastor, L.: Velocity estimation from image sequences with second order differential operators. In: Proc. 7th Int. Conf. On Pattern Recognition, Montreal, pp. 16–19 (1984)
Weber, J., Malik, J.: Robust computation of optical flow in a multi-scale differential framework. Int. J. Comput. Vis. 14(1) (1995)
Wedel, A., Pock, T., Braun, J., Franke, U., Cremers, D.: Duality tv-l1 flow with fundamental matrix prior. In: Image Vision and Computing, Auckland, New Zealand (November 2008)
Weickert, J., Schnörr, C.: Variational optic-flow computation with a spatio-temporal smoothness constraint. J. Math. Im. and Vis. 14(3), 245–255 (2001)
Xu, L., Chen, J., Jia, J.: A segmentation based variational model for accurate optical flow estimation. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 671–684. Springer, Heidelberg (2008)
Yuan, J., Schnörr, C., Mémin, E.: Discrete orthogonal decomposition and variational fluid flow estimation. Journ. of Mathematical Imaging and Vision 28(1), 67–80 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Corpetti, T., Mémin, E. (2012). Stochastic Models for Local Optical Flow Estimation. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2011. Lecture Notes in Computer Science, vol 6667. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24785-9_59
Download citation
DOI: https://doi.org/10.1007/978-3-642-24785-9_59
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24784-2
Online ISBN: 978-3-642-24785-9
eBook Packages: Computer ScienceComputer Science (R0)