Nothing Special   »   [go: up one dir, main page]

Skip to main content

Stochastic Models for Local Optical Flow Estimation

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6667))

  • 2689 Accesses

Abstract

In this paper, we present a stochastic interpretation of the motion estimation problem. The usual optical flow constraint equation (assuming that the points keep their brightness along time), embed for instance within a Lucas-Kanade estimator, can indeed be seen as the minimization of a stochastic process under some strong constraints. These constraints can be relaxed by imposing a weaker temporal assumption on the luminance function and also in introducing anisotropic intensity-based uncertainty assumptions. The amplitude of these uncertainties are jointly computed with the unknown velocity at each point of the image grid. We propose different versions depending on the various hypothesis assumed for the luminance function. The substitution of our new observation terms on a simple Lucas-Kanade estimator improves significantly the quality of the results. It also enables to extract an uncertainty connected to quality of the motion field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M., Szeliski, R.: A database and evaluation methodology for optical flow. In: Int. Conf. on Comp. Vis. (2007)

    Google Scholar 

  2. Barron, J., Fleet, D., Beauchemin, S.: Performance of optical flow techniques. Int. J. Comput. Vis. 12(1), 43–77 (1994)

    Article  Google Scholar 

  3. Barron, J.L., Fleet, D.J., Beauchemin, S.S., Burkitt, T.A.: Performance of optical flow techniques. Int. J. of Comp. Vis. 12(1), 43–77 (1994)

    Article  Google Scholar 

  4. Black, M., Anandan, P.: Robust incremental optical flow. In: Eklundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 800, pp. 296–302. Springer, Heidelberg (1994)

    Google Scholar 

  5. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Bruhn, A., Weickert, J., Kohlberger, T., Schnoerr, C.: A multigrid platform for real-time motion computation with discontinuity-preserving variational methods. Int. J. Com. Vis. 70(3), 257–277 (2006)

    Article  Google Scholar 

  7. Cassisa, C., Simoens, S., Prinet, V.: Two-frame optical flow formulation in an unwarping multiresolution scheme. In: Bayro-Corrochano, E., Eklundh, J.-O. (eds.) CIARP 2009. LNCS, vol. 5856, pp. 790–797. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Corpetti, T., Mémin, E., Pérez, P.: Dense estimation of fluid flows. IEEE Trans. Pattern Anal. Machine Intell. 24(3), 365–380 (2002)

    Article  MATH  Google Scholar 

  9. Fitzpatrick, J.: The existence of geometrical density-image transformations corresponding to object motion. Com. Vis., Grap., Im. Proc. 44(2), 155–174 (1988)

    Article  Google Scholar 

  10. Galvin, B., McCane, B., Novins, K., Mason, D., Mills, S.: Recovering motion fields: an analysis of eight optical flow algorithms. In: Proc. British Mach. Vis. Conf., Southampton (1998)

    Google Scholar 

  11. Heitz, D., Mémin, E., Schnoerr, C.: Variational fluid flow measurements from image sequences: synopsis and perspectives. Exp. Fluids 48(3), 369–393 (2010)

    Article  Google Scholar 

  12. Horn, B., Schunck, B.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)

    Article  Google Scholar 

  13. Lempitsky, V., Roth, S., Rother, C.: Fusionflow: Discrete-continuous optimization for optical flow estimation. In: IEEE Comp. Vis. Patt. Rec. (2008)

    Google Scholar 

  14. Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereovision. In: Int. Joint Conf. on Art. Int., pp. 674–679 (1981)

    Google Scholar 

  15. Mémin, E., Pérez, P.: Dense estimation and object-based segmentation of the optical flow with robust techniques. IEEE Trans. Im. Proc. 7(5), 703–719 (1998)

    Article  Google Scholar 

  16. Nagel, H.: Extending the oriented smoothness constraint into the temporal domain and the estimation of derivatives of optical flow. In: Faugeras, O. (ed.) ECCV 1990. LNCS, vol. 427, pp. 139–148. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

  17. Nesi, P.: Variational approach to optical flow estimation managing discontinuities. Image and Vision Computing 11(7), 419–439 (1993)

    Article  Google Scholar 

  18. Oksendal, B.: Stochastic differential equations. Spinger, Heidelberg (1998)

    Book  MATH  Google Scholar 

  19. Papenberg, N., Bruhn, A., Brox, T., Didas, S., Weickert, J.: Highly accurate optic flow computation with theoretically justified warping. Int. J. Comput. Vision 67(2), 141–158 (2006)

    Article  Google Scholar 

  20. Schunck, B.: The image flow constraint equation. Com. Vis., Grap., Im. Proc. 35, 20–46 (1986)

    Article  Google Scholar 

  21. Sun, D., Roth, S., Black, M.: Secrets of optical flow estimation and their principles. In: Proc. IEEE Com. Vis. and Pat. Rec., CVPR 2010, pp. 2432–2439 (2010)

    Google Scholar 

  22. Tretiak, O., Pastor, L.: Velocity estimation from image sequences with second order differential operators. In: Proc. 7th Int. Conf. On Pattern Recognition, Montreal, pp. 16–19 (1984)

    Google Scholar 

  23. Weber, J., Malik, J.: Robust computation of optical flow in a multi-scale differential framework. Int. J. Comput. Vis. 14(1) (1995)

    Google Scholar 

  24. Wedel, A., Pock, T., Braun, J., Franke, U., Cremers, D.: Duality tv-l1 flow with fundamental matrix prior. In: Image Vision and Computing, Auckland, New Zealand (November 2008)

    Google Scholar 

  25. Weickert, J., Schnörr, C.: Variational optic-flow computation with a spatio-temporal smoothness constraint. J. Math. Im. and Vis. 14(3), 245–255 (2001)

    Article  MATH  Google Scholar 

  26. Xu, L., Chen, J., Jia, J.: A segmentation based variational model for accurate optical flow estimation. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 671–684. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  27. Yuan, J., Schnörr, C., Mémin, E.: Discrete orthogonal decomposition and variational fluid flow estimation. Journ. of Mathematical Imaging and Vision 28(1), 67–80 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Corpetti, T., Mémin, E. (2012). Stochastic Models for Local Optical Flow Estimation. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2011. Lecture Notes in Computer Science, vol 6667. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24785-9_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24785-9_59

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24784-2

  • Online ISBN: 978-3-642-24785-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics