Nothing Special   »   [go: up one dir, main page]

Skip to main content

Fast PDE-Based Image Analysis in Your Pocket

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6667))

Abstract

The increasing computing power of modern smartphones opens the door for interesting mobile image analysis applications. In this paper, we explore the arising possibilities but also discuss remaining challenges by implementing linear and nonlinear diffusion filters as well as basic variational optic flow approaches on a modern Android smartphone. To achieve low runtimes, we present a fast method for acquiring images from the built-in camera and focus on efficient solution strategies for the arising partial differential equations (PDEs): Linear diffusion is realised by approximating a Gaussian convolution by means of an iterated box filter. For nonlinear diffusion and optic flow estimation we use the recent fast explicit diffusion (FED) solver. Our experiments on a recent smartphone show that linear/nonlinear diffusion filters can be applied in realtime/near-realtime to images of size 176×144. Computing optic flow fields of a similar resolution requires some seconds, while achieving a reasonable quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 629–639 (1990)

    Article  Google Scholar 

  2. Bruhn, A., Weickert, J., Schnörr, C.: Lucas/Kanade meets Horn/Schunck: Combining local and global optic flow methods. International Journal of Computer Vision 61, 211–231 (2005)

    Article  Google Scholar 

  3. Horn, B., Schunck, B.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)

    Article  Google Scholar 

  4. Wells, W.M.: Efficient synthesis of Gaussian filters by cascaded uniform filters. IEEE Transactions on Pattern Analysis and Machine Intelligence 8, 234–239 (1986)

    Article  Google Scholar 

  5. Grewenig, S., Weickert, J., Bruhn, A.: From box filtering to fast explicit diffusion. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds.) DAGM 2010. LNCS, vol. 6376, pp. 533–542. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Wells, M.T.: Mobile image processing on the Google phone with the Android operating system (2009), http://www.3programmers.com/mwells/documents/pdf/Final (retrieved 2011-01-06)

  7. GMA3: Moon filter (2010), http://itunes.apple.com/en/app/moon-filter/id387317833 , (retrieved 2011-01-06)

  8. Gogolok, R., Steinel, A.: Shockmypic (2009), http://www.shockmypic.com/iphone/ (retrieved 2011-01-06)

  9. Bradski, G., Kaehler, A.: Learning OpenCV: computer vision with the OpenCV library. O’Reilly, Sebastopol (2008)

    Google Scholar 

  10. Bouguet, J.Y.: Pyramidal implementation of the Lucas Kanade feature tracker – description of the algorithm (2000), http://trac.assembla.com/dilz_mgr/export/272/doc/ktl-tracking/algo_tracking.pdf (retrieved 2011-01-06)

  11. Harmat, A.: Variational optic flow (2010), http://sourceforge.net/projects/varflow/ (retrieved 2011-01-06)

  12. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded up robust features. In: Bischof, H., Leonardis, A., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Olsson, S., Åkesson, P.: Distributed mobile computer vision and applications on the Android platform. Master’s thesis, Faculty of Engineering, Lund University, Sweden (2009)

    Google Scholar 

  14. Ballagas, R., Rohs, M., Sheridan, J.G.: Mobile phones as pointing devices. In: Rukzio, E., Hakkila, J., Spasojevic, M., Mäntyjärvi, J. (eds.) Proc. 2005 Pervasive Mobile Interaction Devices, Munich, Germany, vol. 6, pp. 1–4 (2005)

    Google Scholar 

  15. Wagner, D., Mulloni, A., Langlotz, T., Schmalstieg, D.: Real-time panoramic mapping and tracking on mobile phones. In: Lok, B., Klinker, G., Nakatsu, R. (eds.) Proc. IEEE Virtual Reality Conference 2010, Waltham, MA, pp. 211–218 (2010)

    Google Scholar 

  16. Wagner, D., Schmalstieg, D., Bischof, H.: Multiple target detection and tracking with guaranteed framerates on mobile phones. In: Proc. of IEEE Int. Symposium on Mixed and Augmented Reality 2009, Orlando, FL (2009)

    Google Scholar 

  17. Iijima, T.: Basic theory of pattern observation. In: Papers of Technical Group on Automata and Automatic Control. IECE, Japan (1959) (in Japanese)

    Google Scholar 

  18. Catté, F., Lions, P.L., Morel, J.M., Coll, T.: Image selective smoothing and edge detection by nonlinear diffusion. SIAM Journal on Numerical Analysis 32, 1895–1909 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  19. Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner, Stuttgart (1998)

    MATH  Google Scholar 

  20. Liang, S.: Java Native Interface: Programmer’s Guide and Reference. Addison–Wesley, Boston (1999)

    Google Scholar 

  21. Meier, R.: Professional Android 2 Application Development. Wrox Press Ltd., Birmingham (2010)

    Google Scholar 

  22. Dupuis, E.: Optimizing YUV–RGB color space conversion using Intel’s SIMD technology (2003), http://lestourtereaux.free.fr/papers/data/yuvrgb.pdf , (retrieved 2011-01-07)

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Luxenburger, A., Zimmer, H., Gwosdek, P., Weickert, J. (2012). Fast PDE-Based Image Analysis in Your Pocket. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2011. Lecture Notes in Computer Science, vol 6667. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24785-9_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24785-9_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24784-2

  • Online ISBN: 978-3-642-24785-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics