Abstract
The increasing computing power of modern smartphones opens the door for interesting mobile image analysis applications. In this paper, we explore the arising possibilities but also discuss remaining challenges by implementing linear and nonlinear diffusion filters as well as basic variational optic flow approaches on a modern Android smartphone. To achieve low runtimes, we present a fast method for acquiring images from the built-in camera and focus on efficient solution strategies for the arising partial differential equations (PDEs): Linear diffusion is realised by approximating a Gaussian convolution by means of an iterated box filter. For nonlinear diffusion and optic flow estimation we use the recent fast explicit diffusion (FED) solver. Our experiments on a recent smartphone show that linear/nonlinear diffusion filters can be applied in realtime/near-realtime to images of size 176×144. Computing optic flow fields of a similar resolution requires some seconds, while achieving a reasonable quality.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 629–639 (1990)
Bruhn, A., Weickert, J., Schnörr, C.: Lucas/Kanade meets Horn/Schunck: Combining local and global optic flow methods. International Journal of Computer Vision 61, 211–231 (2005)
Horn, B., Schunck, B.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)
Wells, W.M.: Efficient synthesis of Gaussian filters by cascaded uniform filters. IEEE Transactions on Pattern Analysis and Machine Intelligence 8, 234–239 (1986)
Grewenig, S., Weickert, J., Bruhn, A.: From box filtering to fast explicit diffusion. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds.) DAGM 2010. LNCS, vol. 6376, pp. 533–542. Springer, Heidelberg (2010)
Wells, M.T.: Mobile image processing on the Google phone with the Android operating system (2009), http://www.3programmers.com/mwells/documents/pdf/Final (retrieved 2011-01-06)
GMA3: Moon filter (2010), http://itunes.apple.com/en/app/moon-filter/id387317833 , (retrieved 2011-01-06)
Gogolok, R., Steinel, A.: Shockmypic (2009), http://www.shockmypic.com/iphone/ (retrieved 2011-01-06)
Bradski, G., Kaehler, A.: Learning OpenCV: computer vision with the OpenCV library. O’Reilly, Sebastopol (2008)
Bouguet, J.Y.: Pyramidal implementation of the Lucas Kanade feature tracker – description of the algorithm (2000), http://trac.assembla.com/dilz_mgr/export/272/doc/ktl-tracking/algo_tracking.pdf (retrieved 2011-01-06)
Harmat, A.: Variational optic flow (2010), http://sourceforge.net/projects/varflow/ (retrieved 2011-01-06)
Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded up robust features. In: Bischof, H., Leonardis, A., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)
Olsson, S., Åkesson, P.: Distributed mobile computer vision and applications on the Android platform. Master’s thesis, Faculty of Engineering, Lund University, Sweden (2009)
Ballagas, R., Rohs, M., Sheridan, J.G.: Mobile phones as pointing devices. In: Rukzio, E., Hakkila, J., Spasojevic, M., Mäntyjärvi, J. (eds.) Proc. 2005 Pervasive Mobile Interaction Devices, Munich, Germany, vol. 6, pp. 1–4 (2005)
Wagner, D., Mulloni, A., Langlotz, T., Schmalstieg, D.: Real-time panoramic mapping and tracking on mobile phones. In: Lok, B., Klinker, G., Nakatsu, R. (eds.) Proc. IEEE Virtual Reality Conference 2010, Waltham, MA, pp. 211–218 (2010)
Wagner, D., Schmalstieg, D., Bischof, H.: Multiple target detection and tracking with guaranteed framerates on mobile phones. In: Proc. of IEEE Int. Symposium on Mixed and Augmented Reality 2009, Orlando, FL (2009)
Iijima, T.: Basic theory of pattern observation. In: Papers of Technical Group on Automata and Automatic Control. IECE, Japan (1959) (in Japanese)
Catté, F., Lions, P.L., Morel, J.M., Coll, T.: Image selective smoothing and edge detection by nonlinear diffusion. SIAM Journal on Numerical Analysis 32, 1895–1909 (1992)
Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner, Stuttgart (1998)
Liang, S.: Java Native Interface: Programmer’s Guide and Reference. Addison–Wesley, Boston (1999)
Meier, R.: Professional Android 2 Application Development. Wrox Press Ltd., Birmingham (2010)
Dupuis, E.: Optimizing YUV–RGB color space conversion using Intel’s SIMD technology (2003), http://lestourtereaux.free.fr/papers/data/yuvrgb.pdf , (retrieved 2011-01-07)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Luxenburger, A., Zimmer, H., Gwosdek, P., Weickert, J. (2012). Fast PDE-Based Image Analysis in Your Pocket. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2011. Lecture Notes in Computer Science, vol 6667. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24785-9_46
Download citation
DOI: https://doi.org/10.1007/978-3-642-24785-9_46
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24784-2
Online ISBN: 978-3-642-24785-9
eBook Packages: Computer ScienceComputer Science (R0)