Nothing Special   »   [go: up one dir, main page]

Skip to main content

Sulci Detection in Photos of the Human Cortex Based on Learned Discriminative Dictionaries

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6667))

  • 2638 Accesses

Abstract

The use of discriminative dictionaries is exploited for the segmentation of sulci in digital photos of the human cortex. Manual segmentation of the geometry of sulci by an experienced physician on training data is taken into account to build pairs of such dictionaries. It is demonstrated that this approach allows a robust segmentation of these brain structures on photos of the brain as long as the training data contains sufficiently similar images. Concerning the methodology an improved minimization algorithm for the underlying variational approach is presented taking into account recent advances in orthogonal matching pursuit. Furthermore, the method is stable since it ensures an energy decay in the dictionary update.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing 54(11), 4311–4322 (2006)

    Article  MATH  Google Scholar 

  2. Allen, J.B.: Short term spectral analysis, synthesis, and modification by discrete fourier transform. IEEE Transactions on Acoustics, Speech and Signal Processing ASSP-25(3), 235–238 (1977)

    Article  MATH  Google Scholar 

  3. Armijo, L.: Minimization of functions having Lipschitz continuous first partial derivatives. Pacific Journal of Mathematics 16(1), 1–3 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  4. Berkels, B.: An unconstrained multiphase thresholding approach for image segmentation. In: Tai, X.-C., Mørken, K., Lysaker, M., Lie, K.-A. (eds.) SSVM 2009. LNCS, vol. 5567, pp. 26–37. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont (1999)

    MATH  Google Scholar 

  6. Candès, E.J., Donoho, D.L.: Curvelets – a surprisingly effective nonadaptive representation for objects with edges. In: Schumaker, L.L., et al. (eds.) Curves and Surfaces. Vanderbilt University Press, Nashville (1999)

    Google Scholar 

  7. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. Tech. Rep. 685, Ecole Polytechnique, Centre de Mathématiques appliquées, UMR CNRS 7641, 91128 Palaiseau Cedex (France) (May 2010)

    Google Scholar 

  8. Do, M.N., Vetterli, M.: The contourlet transform: an efficient directional multiresolution image representation. IEEE Transactions on Image Processing 14(12), 2091–2106 (2005)

    Article  Google Scholar 

  9. Engan, K., Aase, S.O., Husøy, J.H.: Frame based signal compression using method of optimal directions (MOD). In: Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS 1999), vol. 4, pp. 1–4 (1999)

    Google Scholar 

  10. Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Discriminative learned dictionaries for local image analysis. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8 (2008)

    Google Scholar 

  11. Mairal, J., Leordeanu, M., Bach, F., Hebert, M., Ponce, J.: Discriminative sparse image models for class-specific edge detection and image interpretation. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 43–56. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Mallat, S.: A wavelet tour of signal processing. Academic Press, London (1999)

    MATH  Google Scholar 

  13. Rubinstein, R., Zibulevsky, M., Elad, M.: Efficient implementation of the K-SVD algorithm using batch orthogonal matching pursuit. Tech. rep., CS Technion (April 2008)

    Google Scholar 

  14. Zhang, Q., Li, B.: Discriminative K-SVD for dictionary learning in face recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2691–2698 (2010)

    Google Scholar 

  15. Zhao, M., Li, S., Kwok, J.: Text detection in images using sparse representation with discriminative dictionaries. Image and Vision Computing 28(12), 1590–1599 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berkels, B., Kotowski, M., Rumpf, M., Schaller, C. (2012). Sulci Detection in Photos of the Human Cortex Based on Learned Discriminative Dictionaries. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2011. Lecture Notes in Computer Science, vol 6667. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24785-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24785-9_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24784-2

  • Online ISBN: 978-3-642-24785-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics