Nothing Special   »   [go: up one dir, main page]

Skip to main content

Visualizing the Evolution of Social Networks

  • Conference paper
Progress in Artificial Intelligence (EPIA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7026))

Included in the following conference series:

Abstract

In recent years we witnessed an impressive advance in the social networks field, which became a “hot” topic and a focus of considerable attention. Also, the development of methods that focus on the analysis and understanding of the evolution of data are gaining momentum. In this paper we present an approach to visualize the evolution of dynamic social networks by using Tucker decomposition and the concept of trajectory. Our visualization strategy is based on trajectories of network’s actors in a bidimensional space that preserves its structural properties. Furthermore, this approach can be used to identify similar actors by comparing the shape and position of the trajectories. To illustrate the proposed approach we conduct a case study using a set of temporal friendship networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Moody, J., McFarland, D., Bender-deMoll, S.: Dynamic Network Visualization. American Journal of Sociology 110(4), 1206–1241 (2005)

    Article  Google Scholar 

  2. Kolda, T.G., Bade, B.W.: Tensor Decompositions and Applications. SIAM Review 51(3), 455–500 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Smilde, A.K.: Three-way Analyses Problems and Prospects. Chemometrics and Intelligent Laboratory Systems 15, 143–157 (1992)

    Article  Google Scholar 

  4. Tucker, L.: Some Mathematical Notes on Three-Mode Factor Analysis. Psychometrika 31(3), 279–311 (1966)

    Article  MathSciNet  Google Scholar 

  5. Kroonenberg, P.M.: Three-mode Principal Component Analysis: Theory and Applications. DSWO Press, Leiden (1983)

    Google Scholar 

  6. Aigner, W., Miksch, S., Muller, W., Schumann, H., Tominski, C.: Visualizing Time-Oriented Data - a Systematic View. Computers and Graphics 31, 401–409 (2007)

    Article  Google Scholar 

  7. Oseledets, I., Savostyanov, D., Tyrtyshnikov, E.: Linear Algebra for Tensor Problems. Computing 85(3), 169–188 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bader, B., Kolda, T.: MATLAB Tensor Toolbox Version 2.4 (March 2010), http://csmr.ca.sandia.gov/tgkolda/TensorToolbox/

  9. Lavit, C., Escoufier, Y., Sabatier, R., Traissac, P.: The ACT (STATIS method). Computational Statistics and Data Analysis 18, 97–119 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Sun, J., Papadimitriou, S., Lin, C., Cao, N., Liu, S., Qian, W.: Multivis: Content-based Social Network Exploration through Multi-way Visual Analysis. In: Proceedings of the 2009 SIAM International Conference on Data Mining (SDM 2009), pp.1063–1074 (2009)

    Google Scholar 

  11. Van de Bunt, G.G., van Duijn, M.A.J., Snijders, T.A.B.: Friendship Networks through Time: An Actor-Oriented Statistical Network Model. Computational and Mathematical Organization Theory 5, 167–192 (1999)

    Article  MATH  Google Scholar 

  12. Michell, L., Amos, A.: Girls, pecking order and smoking. Social Science and Medicine 44, 1861–1869 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Oliveira, M., Gama, J. (2011). Visualizing the Evolution of Social Networks. In: Antunes, L., Pinto, H.S. (eds) Progress in Artificial Intelligence. EPIA 2011. Lecture Notes in Computer Science(), vol 7026. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24769-9_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24769-9_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24768-2

  • Online ISBN: 978-3-642-24769-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics