Abstract
Evolutionary algorithms generally require a large number of objective function evaluations which can be costly in practice. These evaluations can be replaced by evaluations of a cheaper meta-model of the objective functions. In this paper we describe a multiobjective memetic algorithm utilizing local distance based meta-models. This algorithm is evaluated and compared to standard multiobjective evolutionary algorithms as well as a similar algorithm with a global meta-model. The number of objective function evaluations is considered, and also the conditions under which the algorithm actually helps to reduce the time needed to find a solution are analyzed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bader, J., Zitzler, E.: HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization. TIK Report 286, Computer Engineering and Networks Laboratory (TIK), ETH Zurich (November 2008)
Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search space. Complex Systems 9, 115–148 (1995)
Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimisation: NSGA-II. In: Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Guervós, J.J.M., Schwefel, H.P. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)
Deb, K., Goyal, M.: A combined genetic adaptive search (geneas) for engineering design. Computer Science and Informatics 26, 30–45 (1996)
Georgopoulou, C., Giannakoglou, K.: Multiobjective metamodel-assisted memetic algorithms. Multiobjective Memetic Algorithms, 153–181 (2009)
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explorations 11(1), 10–18 (2009), http://dx.doi.org/10.1145/1656274.1656278
Loshchilov, I., Schoenauer, M., Sebag, M.: A mono surrogate for multiobjective optimization. In: Pelikan, M., Branke, J. (eds.) GECCO, pp. 471–478. ACM, New York (2010)
Loshchilov, I., Schoenauer, M., Sebag, M.: Dominance-based pareto-surrogate for multi-objective optimization. In: Deb, K., Bhattacharya, A., Chakraborti, N., Chakroborty, P., Das, S., Dutta, J., Gupta, S., Jain, A., Aggarwal, V., Branke, J., Louis, S.J., Tan, K. (eds.) SEAL 2010. LNCS, vol. 6457, pp. 230–239. Springer, Heidelberg (2010)
Pilát, M., Neruda, R.: ASM-MOMA: Multiobjective memetic algorithm with aggregate surrogate model. In: IEEE Congress on Evolutionary Computation. IEEE, Los Alamitos (to appear, 2011)
Voutchkov, I., Keane, A.: Multiobjective optimization using surrogates. Presented on Adaptive Computing in Design and Manufacture, ACDM 2006 (2006)
Zitzler, E., Deb, K., Thiele, L.: Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evolutionary Computation 8(2), 173–195 (2000)
Zitzler, E., Künzli, S.: Indicator-Based Selection in Multiobjective Search. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004 Part VIII. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pilát, M., Neruda, R. (2011). Local Meta-models for ASM-MOMA. In: Huang, DS., Gan, Y., Bevilacqua, V., Figueroa, J.C. (eds) Advanced Intelligent Computing. ICIC 2011. Lecture Notes in Computer Science, vol 6838. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24728-6_20
Download citation
DOI: https://doi.org/10.1007/978-3-642-24728-6_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24727-9
Online ISBN: 978-3-642-24728-6
eBook Packages: Computer ScienceComputer Science (R0)