Nothing Special   »   [go: up one dir, main page]

Skip to main content

Optimized Projection for Sparse Representation Based Classification

  • Conference paper
Advanced Intelligent Computing (ICIC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6838))

Included in the following conference series:

Abstract

Dimensionality reduction(DR) methods have commonly been used as a principled way to understand the high-dimensional data such as face images. In this paper, we propose a new supervised DR method called Optimized Projection for Sparse Representation based Classification(OP-SRC). SRC assumes that any new sample will approximately lie in the linear span of the training samples sharing the same class label. The decision of SRC is based on the reconstruction residual. OP-SRC aims to reduce the within-class reconstruction residual and simultaneously increases the between-class reconstruction residual. Therefore, SRC performs well in the OP-SRC transformed space. The feasibility and effectiveness of the proposed method is verified on Yale and ORL with promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jain, A.K., Duin, R.P.W., Mao, J.C.: Statistical Pattern Recognition: A Review. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(1), 4–37 (2000)

    Article  Google Scholar 

  2. Turk, M.A., Pentland, A.P.: Face Recognition Using Eigenfaces. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (1991)

    Google Scholar 

  3. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7), 711–720 (1997)

    Article  Google Scholar 

  4. Roweis, S.T., Saul, L.K.: Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science 290(5500), 2323–2325 (2000)

    Article  Google Scholar 

  5. He, X.F., et al.: Face Recognition Using Laplacianfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(3), 328–340 (2005)

    Article  Google Scholar 

  6. Wright, J., et al.: Robust Face Recognition via Sparse Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(2), 210–227 (2009)

    Article  Google Scholar 

  7. Qiao, L.S., Chen, S.C., Tan, X.Y.: Sparsity Preserving Projections with Applications to Face Recognition. Pattern Recognition 43(1), 331–341 (2010)

    Article  MATH  Google Scholar 

  8. Amaldi, E., Kann, V.: On the Approximability of Minimizing Nonzero Variables or Unsatisfied Relations in Linear Systems. Theoretical Computer Science 209(1-2), 237–260 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Donoho, D.L.: For Most Large Underdetermined Systems of Linear Equations the Minimal L(1)-norm Solution Is also the Sparsest Solution. Communications on Pure and Applied Mathematics 59(6), 797–829 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Candes, E.J., Romberg, J.K., Tao, T.: Stable Signal Recovery from Incomplete and Inaccurate Measurements. Communications on Pure and Applied Mathematics 59(8), 1207–1223 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, H.F., Jiang, T., Zhang, K.S.: Efficient and Robust Feature Extraction by Maximum Margin Criterion. IEEE Transactions on Neural Networks 17(1), 157–165 (2006)

    Article  Google Scholar 

  12. Yang, J., Chu, D.: Sparse Representation Classifier Steered Discriminative Projection. In: 20th International Conference on Pattern Recognition, ICPR (2010)

    Google Scholar 

  13. Berg, E.V.D., Friedlander, M.P.: Probing the Pareto Frontier for Basis Pursuit Solutions. SIAM Journal on Scientific Computing 31(2), 890–912 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Berg, E.V.D., Friedlander, M.P.: SPGL1: A Solver for Large-scale Sparse Reconstruction (2007), http://www.cs.ubc.ca/labs/scl/spgl1

  15. Samaria, F.S., Harter, A.C.: Parameterisation of A Stochastic Model for Human Face Identification. In: 2nd IEEE Workshop on Applications of Computer Vision (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

De-Shuang Huang Yong Gan Vitoantonio Bevilacqua Juan Carlos Figueroa

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lu, CY. (2011). Optimized Projection for Sparse Representation Based Classification. In: Huang, DS., Gan, Y., Bevilacqua, V., Figueroa, J.C. (eds) Advanced Intelligent Computing. ICIC 2011. Lecture Notes in Computer Science, vol 6838. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24728-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24728-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24727-9

  • Online ISBN: 978-3-642-24728-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics