Nothing Special   »   [go: up one dir, main page]

Skip to main content

Mathematics and Soft Computing in Music

  • Chapter
  • First Online:
Soft Computing in Humanities and Social Sciences

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 273))

  • 909 Accesses

Abstract

Mathematics is the fundamental tool for dealing with the physical processes that explain music but it is also in the very essence of this art. Musical notes, the first elements which music works with, are defined for each tuning system as very specific frequencies; however, instrumentalists know that small changes in these values do not have serious consequences. In fact, sometimes consensus is only reached if the entire orchestra alters the theoretical pitches. The explanation for this contradiction is that musicians implicitly handle very complex mathematical processes involving some uncertainty in the concepts and this is better explained in terms of fuzzy logic. Modelling the notes as fuzzy sets and extending the concept of tuning systems lead us to a better understanding on how musicians work in real-life. The notes offered by a musician during a performance should be compatible with the theoretical ones but not necessarily equal. A numerical experiment, conducted with the help of a saxophonist, illustrates our approach and also points to the need for considering sequential uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Apel, W.: Harvard Dictionary of Music: Second Edition, Revised and Enlarged, 2nd edn. The Belknap Press of Harvard University Press, Cambridge, Massachussets (1994)

    Google Scholar 

  2. Arcos, J.L., De Mantaras, R.L.: An interactive case-based reasoning approach for generating expressive music. Applied Intelligence 14, 115–129 (2001)

    Article  MATH  Google Scholar 

  3. Benson, D.: Music: a Mathematical Offering. Cambridge University Press, Cambridge (2006), http://www.maths.abdn.ac.uk/~bensondj/html/music.pdf

    Google Scholar 

  4. Borup, H.: A History of String Intonation, http://www.hasseborup.com/ahistoryofintonationfinal1.pdf

  5. Bosteels, K., Kerre, E.E.: A fuzzy framework for defining dynamic playlist generation heuristics. Fuzzy Sets and Systems 160, 3342–3358 (2009)

    Article  MathSciNet  Google Scholar 

  6. Christina, B.: A robust fuzzy logic-based step-gain control for adaptive filters in acoustic echo cancellation. IEEE Transactions on Speech and Audio Processing 9(2), 162–167 (2001)

    Article  Google Scholar 

  7. Cádiz, R.F.: Fuzzy logic in the arts: applications in audiovisual composition and sound synthesis. In: Proceedings of NAFIPS 2005 - 2005 Annual Meeting of the North American Fuzzy Information Processing Society, pp. 551–556. IEEE/IET Electronic Library, IEL (2005)

    Google Scholar 

  8. Civanlar, M.R., Joel Trussel, H.: Digital restoration using fuzzy sets. IEEE Transactions on Acoustics, Speech and Signal Processing ASSF-34(4), 919–936 (1986)

    Article  Google Scholar 

  9. Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications. Academic Press, New York (1980)

    MATH  Google Scholar 

  10. Elsea, P.: Fuzzy logic and musical decisions (1995), http://arts.ucsc.edu/EMS/Music/research/FuzzyLogicTutor/FuzzyTut.html

  11. Goldáraz Gaínza, J.J.: Afinación y temperamento en la música occidental. Alianza Editorial, Madrid (1992)

    Google Scholar 

  12. Hall, R.W., Josíc, K.: The mathematics of musical instruments. The American Mathematical Monthly 108, 347–357 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Haluska, J.: Equal temperament and Pythagorean tuning: a geometrical interpretation in the plane. Fuzzy Sets and Systems 114, 261–269 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jan, H.: Uncertainty measures of well tempered systems. International Journal of General Systems 31, 73–96 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Haluska, J.: The Mathematical Theory of Tone Systems. Marcel Dekker, Inc., Bratislava (2005)

    Google Scholar 

  16. Kiranyaz, S., Qureshi, A.F., Gabbouj, M.: A Generic Audio Classification and Segmentation Approach for Multimedia Indexing and Retrieval. IEEE Transactions on Audio, Speech, and Language Processing 14(3), 1062–1081 (2006)

    Article  Google Scholar 

  17. Lattard, J.: Gammes et tempéraments musicaux. Masson Éditions, Paris (1988)

    Google Scholar 

  18. Lesaffre, M., Leman, M., Martens, J.-P.: A User-Oriented Approach to Music Information Retrieval. Dagstuhl Seminar Proceedings 06171 (2006), http://drops.dagstuhl.de/opus/volltexte/2006/650

  19. Vicente, L.: Fuzzy tuning systems: the mathematics of the musicians. Fuzzy Sets and Systems 150, 35–52 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Piles Estellés, J.: Intervalos y gamas. Ediciones Piles, Valencia (1982)

    Google Scholar 

  21. Wold, E., Blum, T., Keislar, D., Wheaton, J.: Content-Based Classification, Search, and Retrieval of Audio. IEEE MultiMedia Archive 3(3), 27–36 (1996)

    Article  Google Scholar 

  22. Yilmaz, A.E., Telatar, Z.: Potential applications of fuzzy logic in music. In: Proceedings of the 18th IEEE International Conference on Fuzzy Systems, pp. 670–675. IEEE Press, Piscataway (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

León, T., Liern, V. (2012). Mathematics and Soft Computing in Music. In: Seising, R., Sanz González, V. (eds) Soft Computing in Humanities and Social Sciences. Studies in Fuzziness and Soft Computing, vol 273. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24672-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24672-2_23

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24671-5

  • Online ISBN: 978-3-642-24672-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics