Nothing Special   »   [go: up one dir, main page]

Skip to main content

Kalman Filter-Based Facial Emotional Expression Recognition

  • Conference paper
Affective Computing and Intelligent Interaction (ACII 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6974))

Abstract

In this work we examine the use of State-Space Models to model the temporal information of dynamic facial expressions. The later being represented by the 3D animation parameters which are recovered using 3D Candide model. The 3D animation parameters of an image sequence can be seen as the observation of a stochastic process which can be modeled by a linear State-Space Model, the Kalman Filter. In the proposed approach each emotion is represented by a Kalman Filter, with parameters being State Transition matrix, Observation matrix, State and Observation noise covariance matrices. Person-independent experimental results have proved the validity and the good generalization ability of the proposed approach for emotional facial expression recognition. Moreover, compared to the state-of-the-art techniques, the proposed system yields significant improvements in recognizing facial expressions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahlberg, J.: Candide-3 - an updated parameterised face (January 2001)

    Google Scholar 

  2. Buenaposada, J.M., Muñoz, E., Baumela, L.: Recognising facial expressions in video sequences. Pattern Analysis and Applications 11(1), 101–116 (2007)

    Article  MathSciNet  Google Scholar 

  3. Cohen, I., Sebe, N., Garg, A., Chen, L.S., Huang, T.S.: Facial expression recognition from video sequences: temporal and static modeling. Computer Vision and Image Understanding: CVIU 91(1-2), 160–187 (2003)

    Article  Google Scholar 

  4. Dornaika, F., Davoine, F.: Facial expression recognition in continuous videos using linear discriminant analysis. In: MVA, pp. 277–280 (2005)

    Google Scholar 

  5. Dornaika, F., Raducanu, B.: Recognizing facial expressions in videos using a facial action analysis-synthesis scheme. In: AVSS, p. 8. IEEE Computer Society, Los Alamitos (2006)

    Google Scholar 

  6. Ekman, P., Friesen, W.: Facial Action Coding System: A Technique for the Measurement of Facial Movement. Consulting Psychologists Press, Palo Alto (1978)

    Google Scholar 

  7. Ghahramani, Z., Hinton, G.E.: Parameter estimation for linear dynamical systems. Technical Report (Short Note) CRG-TR-96-2, Department of Computer Science, University of Toronto (February 1996)

    Google Scholar 

  8. Ghahramani, Z., Hinton, G.E.: Variational learning for switching state-space models. Neural Computation 12(4), 831–864 (2000)

    Article  Google Scholar 

  9. Hou, Y., Fan, P., Ravyse, I., Sahli, H.: 3d face alignment via cascade 2d shape alignment and constrained structure from motion. In: Blanc-Talon, J., Philips, W., Popescu, D.C., Scheunders, P. (eds.) ACIVS 2009. LNCS, vol. 5807, pp. 550–561. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Hu, C., Chang, Y., Feris, R., Turk, M.: Manifold based analysis of facial expression. In: CVPR Workshop on Face Processing in Video (2004)

    Google Scholar 

  11. Jöreskog, K.G.: Some contributions to maximum likelihood factor analysis. Psychometrika 32(4), 443–482 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kanade, T., Cohn, J.F., Tian, Y.L.: Comprehensive database for facial expression analysis. In: FG, pp. 46–53 (2000)

    Google Scholar 

  13. Kononenko, I., Bratko, I.: Information-based evaluation criterion for classifier’s performance. Machine Learning 6, 67–80 (1991)

    Google Scholar 

  14. Liang, L., Wen, F., Xu, Y., Tang, X., Shum, H.Y.: Accurate face alignment using shape constrained markov network. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 1313–1319 (2006)

    Google Scholar 

  15. Otsuka, T., Ohya, J.: Recognition of facial expressions using hmm with continuous output probabilities. In: 5th IEEE International Workshop on Robot and Human Communication, 1996, pp. 323–328 (November 1996)

    Google Scholar 

  16. Pantic, M.: Machine analysis of facial behaviour: Naturalistic and dynamic behaviour. Philosophical Transactions of the Royal Society B: Biological Sciences 364(1535), 3505 (2009)

    Article  Google Scholar 

  17. Rosenbaum, T., Zetlin-Jones, A.: The kalman filter and the em algorithm (December 2006)

    Google Scholar 

  18. Roweis, S., Ghahramani, Z.: An em algorithm for identification of nonlinear dynamical systems (June 2000)

    Google Scholar 

  19. Rubin, D.B., Thayer, D.T.: Em algorithms for ml factor analysis. Psychometrika 47(1), 69–76 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  20. Russel, J.A.: A circumplex model of affect. Journal of Personality and Social Psychology 39(6), 1161–1178 (1980)

    Article  Google Scholar 

  21. Uddin, M., Lee, J., Kim, T.: An enhanced independent component-based human facial expression recognition from video. IEEE Transactions on Consumer Electronics 55(4), 2216–2224 (2009)

    Article  Google Scholar 

  22. Vidal, R., Chiuso, A., Soatto, S.: Observability and identifiability of jump linear systems (August 2002)

    Google Scholar 

  23. Yeasin, M., Bullot, B., Sharma, R.: From facial expression to level of interest: A spatio-temporal approach. In: CVPR (2), pp. 922–927 (2004)

    Google Scholar 

  24. Zhu, Y., de Silva, L.C., Ko, C.C.: Using moment invariants and hmm in facial expression recognition. Pattern Recognition Letters 23(1-3), 83–91 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fan, P., Gonzalez, I., Enescu, V., Sahli, H., Jiang, D. (2011). Kalman Filter-Based Facial Emotional Expression Recognition. In: D’Mello, S., Graesser, A., Schuller, B., Martin, JC. (eds) Affective Computing and Intelligent Interaction. ACII 2011. Lecture Notes in Computer Science, vol 6974. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24600-5_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24600-5_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24599-2

  • Online ISBN: 978-3-642-24600-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics