Abstract
In this work we examine the use of State-Space Models to model the temporal information of dynamic facial expressions. The later being represented by the 3D animation parameters which are recovered using 3D Candide model. The 3D animation parameters of an image sequence can be seen as the observation of a stochastic process which can be modeled by a linear State-Space Model, the Kalman Filter. In the proposed approach each emotion is represented by a Kalman Filter, with parameters being State Transition matrix, Observation matrix, State and Observation noise covariance matrices. Person-independent experimental results have proved the validity and the good generalization ability of the proposed approach for emotional facial expression recognition. Moreover, compared to the state-of-the-art techniques, the proposed system yields significant improvements in recognizing facial expressions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ahlberg, J.: Candide-3 - an updated parameterised face (January 2001)
Buenaposada, J.M., Muñoz, E., Baumela, L.: Recognising facial expressions in video sequences. Pattern Analysis and Applications 11(1), 101–116 (2007)
Cohen, I., Sebe, N., Garg, A., Chen, L.S., Huang, T.S.: Facial expression recognition from video sequences: temporal and static modeling. Computer Vision and Image Understanding: CVIU 91(1-2), 160–187 (2003)
Dornaika, F., Davoine, F.: Facial expression recognition in continuous videos using linear discriminant analysis. In: MVA, pp. 277–280 (2005)
Dornaika, F., Raducanu, B.: Recognizing facial expressions in videos using a facial action analysis-synthesis scheme. In: AVSS, p. 8. IEEE Computer Society, Los Alamitos (2006)
Ekman, P., Friesen, W.: Facial Action Coding System: A Technique for the Measurement of Facial Movement. Consulting Psychologists Press, Palo Alto (1978)
Ghahramani, Z., Hinton, G.E.: Parameter estimation for linear dynamical systems. Technical Report (Short Note) CRG-TR-96-2, Department of Computer Science, University of Toronto (February 1996)
Ghahramani, Z., Hinton, G.E.: Variational learning for switching state-space models. Neural Computation 12(4), 831–864 (2000)
Hou, Y., Fan, P., Ravyse, I., Sahli, H.: 3d face alignment via cascade 2d shape alignment and constrained structure from motion. In: Blanc-Talon, J., Philips, W., Popescu, D.C., Scheunders, P. (eds.) ACIVS 2009. LNCS, vol. 5807, pp. 550–561. Springer, Heidelberg (2009)
Hu, C., Chang, Y., Feris, R., Turk, M.: Manifold based analysis of facial expression. In: CVPR Workshop on Face Processing in Video (2004)
Jöreskog, K.G.: Some contributions to maximum likelihood factor analysis. Psychometrika 32(4), 443–482 (1967)
Kanade, T., Cohn, J.F., Tian, Y.L.: Comprehensive database for facial expression analysis. In: FG, pp. 46–53 (2000)
Kononenko, I., Bratko, I.: Information-based evaluation criterion for classifier’s performance. Machine Learning 6, 67–80 (1991)
Liang, L., Wen, F., Xu, Y., Tang, X., Shum, H.Y.: Accurate face alignment using shape constrained markov network. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 1313–1319 (2006)
Otsuka, T., Ohya, J.: Recognition of facial expressions using hmm with continuous output probabilities. In: 5th IEEE International Workshop on Robot and Human Communication, 1996, pp. 323–328 (November 1996)
Pantic, M.: Machine analysis of facial behaviour: Naturalistic and dynamic behaviour. Philosophical Transactions of the Royal Society B: Biological Sciences 364(1535), 3505 (2009)
Rosenbaum, T., Zetlin-Jones, A.: The kalman filter and the em algorithm (December 2006)
Roweis, S., Ghahramani, Z.: An em algorithm for identification of nonlinear dynamical systems (June 2000)
Rubin, D.B., Thayer, D.T.: Em algorithms for ml factor analysis. Psychometrika 47(1), 69–76 (1982)
Russel, J.A.: A circumplex model of affect. Journal of Personality and Social Psychology 39(6), 1161–1178 (1980)
Uddin, M., Lee, J., Kim, T.: An enhanced independent component-based human facial expression recognition from video. IEEE Transactions on Consumer Electronics 55(4), 2216–2224 (2009)
Vidal, R., Chiuso, A., Soatto, S.: Observability and identifiability of jump linear systems (August 2002)
Yeasin, M., Bullot, B., Sharma, R.: From facial expression to level of interest: A spatio-temporal approach. In: CVPR (2), pp. 922–927 (2004)
Zhu, Y., de Silva, L.C., Ko, C.C.: Using moment invariants and hmm in facial expression recognition. Pattern Recognition Letters 23(1-3), 83–91 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fan, P., Gonzalez, I., Enescu, V., Sahli, H., Jiang, D. (2011). Kalman Filter-Based Facial Emotional Expression Recognition. In: D’Mello, S., Graesser, A., Schuller, B., Martin, JC. (eds) Affective Computing and Intelligent Interaction. ACII 2011. Lecture Notes in Computer Science, vol 6974. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24600-5_53
Download citation
DOI: https://doi.org/10.1007/978-3-642-24600-5_53
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24599-2
Online ISBN: 978-3-642-24600-5
eBook Packages: Computer ScienceComputer Science (R0)