Nothing Special   »   [go: up one dir, main page]

Skip to main content

Emotion-Based Intrinsic Motivation for Reinforcement Learning Agents

  • Conference paper
Affective Computing and Intelligent Interaction (ACII 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6974))

Abstract

In this paper, we propose an adaptation of four common appraisal dimensions that evaluate the relation of an agent with its environment into reward features within an intrinsically motivated reinforcement learning framework. We show that, by optimizing the relative weights of such features for a given environment, the agents attain a greater degree of fitness while overcoming some of their perceptual limitations. This optimization process resembles the evolutionary adaptive process that living organisms are subject to. We illustrate the application of our method in several simulated foraging scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aberdeen, D.: A (revised) survey of approximate methods for solving partially observable Markov decision processes. Technical report, NICTA (2003)

    Google Scholar 

  2. Ahn, H., Picard, R.: Affective cognitive learning and decision making: The role of emotions. In: EMCSR 2006: The 18th Europ. Meet. on Cyber. and Syst. Res. (2006)

    Google Scholar 

  3. Broekens, D.: Affect and learning: a computational analysis. Doctoral Thesis, Leiden University (2007)

    Google Scholar 

  4. Cardinal, R., Parkinson, J., Hall, J., Everitt, B.: Emotion and motivation: The role of the amygdala, ventral striatum, and prefrontal cortex. Neuroscience and Biobehavioral Reviews 26(3), 321–352 (2002)

    Article  Google Scholar 

  5. Dawkins, M.: Animal minds and animal emotions. American Zoologist 40(6), 883–888 (2000)

    Google Scholar 

  6. El-Nasr, M., Yen, J., Ioerger, T.: FLAME - Fuzzy logic adaptive model of emotions. Auton. Agents and Multiagent Systems 3(3), 219–257 (2000)

    Article  Google Scholar 

  7. Ellsworth, P., Scherer, K.: Appraisal processes in emotion. In: Handbook of Affective Sciences, pp. 572–595. Oxford University Press, Oxford (2003)

    Google Scholar 

  8. Gadanho, S., Hallam, J.: Robot learning driven by emotions. Adaptive Behavior 9(1), 42–64 (2001)

    Article  MATH  Google Scholar 

  9. Leventhal, H., Scherer, K.: The relationship of emotion to cognition: A functional approach to a semantic controversy. Cognition & Emotion 1(1), 3–28 (1987)

    Article  Google Scholar 

  10. Littman, M.: Memoryless policies: Theoretical limitations and practical results. From Animals to Animats 3, 238–245 (1994)

    Google Scholar 

  11. Moore, A., Atkeson, C.: Prioritized sweeping: Reinforcement learning with less data and less real time. Machine Learning 13, 103–130 (1993)

    Google Scholar 

  12. Ng, A., Harada, D., Russel, S.: Policy invariance under reward transformations: Theory and application to reward shaping. In: Proc. 16th Int. Conf. Machine Learning, pp. 278–287 (1999)

    Google Scholar 

  13. Niekum, S., Barto, A., Spector, L.: Genetic programming for reward function search. IEEE Trans. Autonomous Mental Development 2(2), 83–90 (2010)

    Article  Google Scholar 

  14. Salichs, M., Malfaz, M.: Using emotions on autonomous agents. The role of Happiness, Sadness and Fear. In: AISB 2006: Adaption in Artificial and Biological Systems, pp. 157–164 (2006)

    Google Scholar 

  15. Singh, S., Jaakkola, T., Jordan, M.: Learning without state-estimation in partially observable Markovian decision processes. In: Proc. 11th Int. Conf. Machine Learning, pp. 284–292 (1994)

    Google Scholar 

  16. Singh, S., Lewis, R., Barto, A., Sorg, J.: Intrinsically motivated reinforcement learning: An evolutionary perspective. IEEE Trans. Autonomous Mental Development 2(2), 70–82 (2010)

    Article  Google Scholar 

  17. Sorg, J., Singh, S., Lewis, R.: Internal rewards mitigate agent boundedness. In: Proc. 27th Int. Conf. Machine Learning, pp. 1007–1014 (2010)

    Google Scholar 

  18. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sequeira, P., Melo, F.S., Paiva, A. (2011). Emotion-Based Intrinsic Motivation for Reinforcement Learning Agents. In: D’Mello, S., Graesser, A., Schuller, B., Martin, JC. (eds) Affective Computing and Intelligent Interaction. ACII 2011. Lecture Notes in Computer Science, vol 6974. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24600-5_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24600-5_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24599-2

  • Online ISBN: 978-3-642-24600-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics