Abstract
Model-driven Engineering (MDE) approaches are often recognized as a solution to palliate the complexity of software maintainability tasks. However, there is no empirical evidence of their benefits and limitations with respect to code-based maintainability practices. To fill this gap, this paper illustrates the results of an empirical study, involving 44 subjects, in which we compared an MDE methodology, WebML, and a code-based methodology, based on PHP, with respect to the performance and satisfaction of junior software developers while executing analysability, corrective and perfective maintainability tasks on Web applications. Results show that the involved subjects performed better with WebML than with PHP, although they showed a slight preference towards tackling maintainability tasks directly on the source code. Our study also aims at providing a replicable laboratory package that can be used to assess the maintainability of different development methods.
The authors wish to thank the students who kindly agreed to participate in this empirical study.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ruiz, F., Polo, M.: Mantenimiento del Software. Grupo Alarcos, Departamento de Informática de la Universidad de Castilla-La Mancha (2007)
Coleman, D., Ash, D., Lowther, B., Oman, P.: Using metrics to evaluate software system maintainability. Computer 27(8), 44–49 (2002)
Ameller, D., Gutiérrez, F., Cabot, J.: Dealing with non-functional requirements in model-driven development (2010)
López, E.D., González, M., López, M., Iduñate, E.L.: Proceso de Desarrollo de Software Mediante Herramientas MDA. In: CISCI: Conferencia Iberoamericana en Sistemas, Cibernética e Informática (2007)
Heijstek, W., Chaudron, M.R.V.: Empirical investigations of model size, complexity and effort in a large scale, distributed model driven development process. In: 35th Euromicro Conference on Software Engineering and Advanced Applications, pp. 113–120. IEEE, Los Alamitos (2009)
Mohagheghi, P.: An Approach for Empirical Evaluation of Model-Driven Engineering in Multiple Dimensions. In: From Code Centric to Model Centric: Evaluating the Effectiveness of MDD (C2M:EEMDD), pp. 6–17. CEA LIST Publication (2010)
Glass, R.L.: Matching methodology to problem domain. Communications of the ACM 47(5), 19–21 (2004)
Wohlin, C., Runeson, P., Host, M.: Experimentation in software engineering: an introduction. Springer, Netherlands (2000)
Dyba, T., Kitchenham, B.A., Jorgensen, M.: Evidence-based software engineering for practitioners. IEEE Software 22(1), 58–65 (2005)
Kitchenham, B., Budgen, D., Brereton, P., Turner, M., Charters, S., Linkman, S.: Large-scale software engineering questions-expert opinion or empirical evidence? IET Software 1(5), 161–171 (2007)
Zelkowitz, M.V.: An update to experimental models for validating computer technology. Journal of Systems and Software 82(3), 373–376 (2009)
Wikipedia, http://en.wikipedia.org/wiki/PHP
Vallecillo, A., Koch, N., Cachero, C., Comai, S., Fraternali, P., Garrigós, I., Gómez, J., Kappel, G., Knapp, A., Matera, M., et al.: MDWEnet: A practical approach to achieving interoperability of model-driven Web engineering methods. In: Workshop Proc. of 7th Int. Conf. on Web Engineering (ICWE 2007). Citeseer, Italy (2007)
Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Morgan Kaufmann series in data management systems: Designing data-intensive Web applications. Morgan Kaufmann Pub., San Francisco (2003)
ISO/IEC FCD 25010: Systems and software engineering - Software product. Requirements and Evaluation(SQuaRE) - Quality models for software product quality and system quality in use (2009)
Chapin, N., Hale, J.E., Khan, K.M., Ramil, J.F., Tan, W.G.: Types of software evolution and software maintenance. Journal of Software Maintenance and Evolution: Research and Practice 13(1), 3–30 (2001)
Kitchenham, B., Mendes, E., Travassos, G.H.: Cross versus Within-Company Cost Estimation Studies: A Systematic Review. IEEE Transactions on Software Engineering 33(5), 316–329 (2007)
Martinez, Y., Cachero, C., Melia, S.: Evidencia empírica sobre mejoras en productividad y calidad mediante el uso de aproximaciones MDD: un mapeo sistemático de la literatura. REICIS (submitted) (2011)
Mellegård, N., Staron, M.: Improving Efficiency of Change Impact Assessment Using Graphical Requirement Specifications: An Experiment. In: Product-Focused Software Process Improvement, pp. 336–350 (2010)
Perry, D.E., Porter, A.A., Votta, L.G.: Empirical studies of software engineering: a roadmap. In: The Future of Software Engineering, pp. 345–355. ACM, New York (2000)
Moody, D.L.: Dealing with Complexity: A Practical Method for Representing Large Entity Relationship Models (PhD Thesis). Melbourne, Australia: Department of Information Systems, University of Melbourne (2001)
Abrahão, S., Mendes, E., Gomez, J., Insfran, E.: A model-driven measurement procedure for sizing web applications: Design, automation and validation. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735, pp. 467–481. Springer, Heidelberg (2007)
Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): a modeling language for designing Web sites. Computer Networks 33(1-6), 137–157 (2000)
Cook, T.D., Campbell, D.T., Day, A.: Quasi-experimentation: Design & analysis issues for field settings. Houghton Mifflin Boston (1979)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Martínez, Y., Cachero, C., Matera, M., Abrahao, S., Luján, S. (2011). Impact of MDE Approaches on the Maintainability of Web Applications: An Experimental Evaluation. In: Jeusfeld, M., Delcambre, L., Ling, TW. (eds) Conceptual Modeling – ER 2011. ER 2011. Lecture Notes in Computer Science, vol 6998. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24606-7_18
Download citation
DOI: https://doi.org/10.1007/978-3-642-24606-7_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24605-0
Online ISBN: 978-3-642-24606-7
eBook Packages: Computer ScienceComputer Science (R0)