Nothing Special   »   [go: up one dir, main page]

Skip to main content

Computing All Subtree Repeats in Ordered Ranked Trees

  • Conference paper
String Processing and Information Retrieval (SPIRE 2011)

Abstract

We consider the problem of finding all subtree repeats in a given ordered ranked tree. Specifically, we transform the given tree to a string representing its postfix notation, and then propose an algorithm based on the bottom-up technique. The proposed algorithm is divided into two phases: the preprocessing phase, and the phase where all subtree repeats are computed. The linear runtime of the algorithm, as well as the use of linear auxiliary space, are important aspects of its quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools, 2nd edn. Addison-Wesley, Reading (2006)

    MATH  Google Scholar 

  2. Crochemore, M.: An optimal algorithm for computing the repetitions in a word. Inf. Process. Lett. 12(5), 244–250 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  3. Downey, P.J., Sethi, R., Tarjan, R.E.: Variations on the common subexpression problem. J. ACM 27, 758–771 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dubiner, M., Galil, Z., Magen, E.: Faster tree pattern matching. J. ACM 41, 205–213 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Flajolet, P., Sipala, P., Steyaert, J.M.: Analytic variations on the common subexpression problem. In: Proceedings of the Seventeenth International Colloquium on Automata, Languages and Programming, pp. 220–234. Springer-Verlag New York, Inc., New York (1990)

    Chapter  Google Scholar 

  6. Flouri, T., Janoušek, J., Melichar, B.: Subtree matching by pushdown automata. Computer Science and Information Systems/ComSIS 7(2), 331–357 (2010)

    Article  Google Scholar 

  7. Grossi, R.: On finding common subtrees. Theor. Comput. Sci. 108(2), 345–356 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hoffmann, C.M., O’Donnell, M.J.: Pattern matching in trees. J. ACM 29, 68–95 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  9. Janousek, J.: String suffix automata and subtree pushdown automata. In: Holub, J., Zdárek, J. (eds.) Stringology. pp. 160–172. Prague Stringology Club, Department of Computer Science and Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague (2009)

    Google Scholar 

  10. Karp, R.M., Miller, R.E., Rosenberg, A.L.: Rapid identification of repeated patterns in strings, trees and arrays. In: Proceedings of the Fourth Annual ACM Symposium on Theory of Computing, STOC 1972, pp. 125–136. ACM, New York (1972)

    Chapter  Google Scholar 

  11. Kosaraju, S.R.: Efficient tree pattern matching. In: Proceedings of the 30th Annual Symposium on Foundations of Computer Science, pp. 178–183. IEEE Computer Society, Washington, DC (1989)

    Chapter  Google Scholar 

  12. Kuboyama, T.: Matching and Learning in Trees. Ph.D. thesis, University of Tokyo (2007)

    Google Scholar 

  13. Mauri, G., Pavesi, G.: Algorithms for pattern matching and discovery in rna secondary structure. Theor. Comput. Sci. 335, 29–51 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Melichar, B.: Arbology: Trees and pushdown automata. In: Dediu, A.-H., Fernau, H., Martín-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 32–49. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Christou, M. et al. (2011). Computing All Subtree Repeats in Ordered Ranked Trees. In: Grossi, R., Sebastiani, F., Silvestri, F. (eds) String Processing and Information Retrieval. SPIRE 2011. Lecture Notes in Computer Science, vol 7024. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24583-1_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24583-1_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24582-4

  • Online ISBN: 978-3-642-24583-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics