Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Saturation Binary Neural Network for Bipartite Subgraph Problem

  • Conference paper
Bio-Inspired Computing and Applications (ICIC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6840))

Included in the following conference series:

Abstract

In this paper, we propose a saturation binary neuron model and use it to construct a Hopfield-type neural network called saturation binary neural network to solve the bipartite sub-graph problem. A large number of instances have been simulated to verify the proposed algorithm, with the simulation result showing that our algorithm finds the solution quality is superior to the compared algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Garey, M.R., Johnson, D.S., Stockmeyer, L.J.: Some simplified NP-complete graph problem. Theor. Comput. Sci., 237–267 (1976)

    Google Scholar 

  2. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations, pp. 85–104. Plenum, New York (1972)

    Chapter  Google Scholar 

  3. Even, S., Shiloach, Y.: NP-completeness of several arrangement problems. Technical Report 43, Department of computer Science, Technion, Haifa Israel (1975)

    Google Scholar 

  4. Bondy, J.A., Locke, S.C.: Largest bipartite subgraph in triangle-free graphs with maximum degree three. J. Graph Theory, 477–504 (1986)

    Google Scholar 

  5. Grotscheland, M., Pulleyblank, W.R.: Weakly bipartite graphs and the max-cut problem. Oper. Res. Lett., 23–27 (1981)

    Google Scholar 

  6. Barahona, F.: On some weakly bipartite graph. Oper. Res. Lett. 2(5), 239–242 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Nat. Acad. Sci. U.S. 79, 2554–2558 (1982)

    Article  MathSciNet  Google Scholar 

  8. Hopfield, J.J.: Neurons with graded response have collective computation properties like those of two-state neurons. Proc. Nat. Acad. Sci. U.S. 81, 3088–3092 (1982)

    Article  MathSciNet  Google Scholar 

  9. Hopfield, J.J., Tank, D.W.: ’Neural’ computation of decisions in optimization problems. Bio. Cybern. 52, 141–152 (1985)

    MATH  Google Scholar 

  10. Hopfield, J.J., Tank, D.W.: Simple ’Neural’ optimization networks: An a/d converter, signal decision circuit, and a linear programming circuit. IEEE Trans. Circuits Syst. 33(5), 533–541 (1986)

    Article  Google Scholar 

  11. Hopfield, J.J., Tank, D.W.: Computing with neural circuits: A model. Science 233, 625–633 (1986)

    Article  Google Scholar 

  12. Lee, K.C., Funabiki, N., Takefuji, Y.: A parallel improvement algorithm for the bipartite subgraph problem. IEEE Trans. Neural Networks 3(1), 139–145 (1992)

    Article  Google Scholar 

  13. Garey, M.R., Johnson, D.S.: Computers and Intractability: a Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979)

    MATH  Google Scholar 

  14. Ackley, D.H., Hinton, G.E., Sejnowski, T.J.: A learning algorithm for Boltzman Machines. Cognitive Science 9, 147–169 (1985)

    Article  Google Scholar 

  15. McCulloch, W.S., Pitts, W.H.: A logical calculus of ideas immanent in nervous activity. Bull. Math. Biophys 5, 115–133 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  16. Takefuji, Y., Lee, K.C.: An artificial hysteresis binary neuron: A model suppressing the oscillatory behaviors of neural dynamics. Biol. Cybern. 64, 353–356 (1991)

    Article  Google Scholar 

  17. Wang, R.L., Tang, Z., Cao, Q.P.: A Hopfield Network Learning Method for Bipartite Subgraph Problem. IEEE Trans. Neural Networks 15(6), 1458–1465 (2004)

    Article  Google Scholar 

  18. Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C.: Optimization by simulated annealing: An experimental evaluation; Part 1, graph partitioning. Operations Research 37(6), 865–892 (1989)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, C., Zhao, LQ., Wang, RL. (2012). A Saturation Binary Neural Network for Bipartite Subgraph Problem. In: Huang, DS., Gan, Y., Premaratne, P., Han, K. (eds) Bio-Inspired Computing and Applications. ICIC 2011. Lecture Notes in Computer Science(), vol 6840. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24553-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24553-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24552-7

  • Online ISBN: 978-3-642-24553-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics