Nothing Special   »   [go: up one dir, main page]

Skip to main content

Bootstrapping Parameter Estimation in Dynamic Systems

  • Conference paper
Discovery Science (DS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6926))

Included in the following conference series:

Abstract

We propose a novel approach for parameter estimation in dynamic systems. The method is based on the use of bootstrapping for time series data. It estimates parameters within the least square framework. The data points that do not appear in the individual bootstrapped datasets are used to assess the goodness of fit and for adaptive selection of the optimal parameters.

We evaluate the efficacy of the proposed method by applying it to estimate parameters of dynamic biochemical systems. Experimental results show that the approach performs accurate estimation in both noise-free and noisy environments, thus validating its effectiveness. It generally outperforms related approaches in the scenarios where data is characterized by noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andrews, D.W.K.: The block-block boostrap: improved asymptotic refinements. Econometrica 72(3), 673–700 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bar-Or, R.L., Maya, R., Segel, L.A., Alon, U., Levine, A.J., Oren, M.: Generation of oscillations by the p53-mdm2 feedback loop: a theoretical and experimental study. Proc. Natl. Acad. Sci. USA 97(21), 11250–11255 (2000)

    Article  Google Scholar 

  3. Braithwaite, A.W., Royds, J.A., Jackson, P.: The p53 story: layers of complexity. Carcinogenesis 26(7), 1161–1169 (2005)

    Article  Google Scholar 

  4. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  5. Brewer, D.: Modelling the p53 gene regulatory network. Ph.D. thesis, University of London (2006)

    Google Scholar 

  6. Brewer, D., Barenco, M., Callard, R., Hubank, M., Stark, J.: Fitting ordinary differential equations to short time course data. Philosophical Transactions of the Royal Society A 366, 519–544 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Calder, M., Gilmore, S., Hillston, J.: Modelling the influence of RKIP on the ERK signalling pathway using the stochastic process algebra PEPA. In: Priami, C., Ingólfsdóttir, A., Mishra, B., Riis Nielson, H. (eds.) Transactions on Computational Systems Biology VII. LNCS (LNBI), vol. 4230, pp. 1–23. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Calderhead, B., Girolami, M., Lawrence, N.: Accelerating bayesian inference over nonlinear differentail equations with gaussian processes. Advances in Neural Information Processing System 21, 217–224 (2009)

    Google Scholar 

  9. Cho, K.H., Shin, S.Y., Kim, H.W., Wolkenhauer, O., Mcferran, B., Kolch, W.: Mathematical modeling of the influence of RKIP on the ERK signaling pathway. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 127–141. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Ciliberto, A., Novak, B., Tyson, J.J.: Steady states and oscillations in the p53/mdm2 network cell cycle. Cell Cycle 4(3), 488–493 (2005)

    Article  Google Scholar 

  11. Coleman, T.F., Li, Y.: On the convergence of reflective Newton methods for large-scale nonlinear minimization subject to bounds. Mathematical Programming 67(2), 189–224 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Coleman, T.F., Li, Y.: An interior, trust region approach for nonlinear minimization subject to bounds. SIAM Journal on Optimization 6(2), 418–445 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cussens, J.: Parameter estimation in stochastic logic programs. Machine Learning 44(3), 245–271 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Davidson, E., Levin, M.: Gene regulatory networks. Proc. Natl. Acad. Sci. USA 102(14), 4935 (2005)

    Article  Google Scholar 

  15. Efron, B.: The Jackknife, the Bootstrap and other Resampling Plans. Society for Industrial and Applied Mathematics, Philadelphia (1982)

    Book  MATH  Google Scholar 

  16. Efron, B.: Bootstrap methods: another look at the jackknife. The Annals of Statistics 7(1), 1–26 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Efron, B., Tibshirani, R.: An introduction to bootstrap. Chapman and Hall, Boca Raton (1993)

    Book  MATH  Google Scholar 

  18. Elliot, W., Elliot, D.: Biochemistry and Molecular Biology, 2nd edn. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  19. Fridman, J.S., Lowe, S.W.: Control of apoptosis by p53. Oncogene 22(56), 9030–9040 (2003)

    Article  Google Scholar 

  20. Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Bayesian Data Analysis. Chapman and Hall/CRC (2004)

    Google Scholar 

  21. Girolami, M.: Bayesian inference for differential equations. Theoretical Computer Science 408(1), 4–16 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gunawardena, J.: Models in systems biology: the parameter problem and the meanings of robustness. In: Lodhi, H., Muggleton, S. (eds.) Elements of Computational Systems Biology, vol. 1. Wiley, Hoboken (2010)

    Google Scholar 

  23. Kirk, P.D.W., Stumpf, P.H.: Gaussian process regression bootstrapping: exploring the effects of uncertainty in time course data. Bioinformatics 25(10), 1300–1306 (2009)

    Article  Google Scholar 

  24. Levins, R.: The strategy of model building in population biology. American Scientist 54(421-429) (1966)

    Google Scholar 

  25. Lodhi, H.: Advances in systems biology. In: Lodhi, H., Muggleton, S. (eds.) Elements of Computational Systems Biology. Wiley, Hoboken (2010)

    Chapter  Google Scholar 

  26. Lodhi, H., Muggleton, S.: Modelling metabolic pathways using stochastic logic programs-based ensemble methods. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 119–133. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  27. Ramsay, J.O., Hooker, G., Campbell, D., Cao, J.: Parameter estimation for differential equations: a generalized smoothing approach. J. R. Statist. Soc. B 69(5), 741–796 (2007)

    Article  MathSciNet  Google Scholar 

  28. Rao, J.S., Tibshirani, R.: The out-of-bootstrap method for model averaging and selection. Tech. rep., University of Toronto (1997)

    Google Scholar 

  29. Tyson, J.: Models of cell cycle control in eukaryotes. Journal of Biotechnology 71(1-3), 239–244 (1999)

    Article  Google Scholar 

  30. Vogelstein, B., Lane, D., Levine, A.: Surfing the p53 network. Nature 408(6810), 307–310 (2000)

    Article  Google Scholar 

  31. Yeung, K., Seitz, T., Li, S., Janosch, P., McFerran, B., Kaiser, C., Fee, F., Katsanakis, K.D., Rose, D.W., Mischak, H., Sedivy, J.M., Kolch, W.: Suppression of Raf-1 kinase activity and MAP kinase signaling by RKIP. Nature 401, 173–177 (1999)

    Article  Google Scholar 

  32. Yeung, K., Janosch, P., McFerran, B., Rose, D.W., Mischak, H., Sedivy, J.M., Kolch, W.: Mechanism of suppression of the Raf/MEK/Extracellular signal-regulated kinase pathway by the Raf kinase inhibitor protein. Mol. Cell Biol. 20(9), 3079–3085 (2000)

    Article  Google Scholar 

  33. Yonish-Rouach, Y., Resnitzky, D., Lotem, J., Sachs, L., Kimchi, A., Oren, M.: Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 352(6333), 345–347 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lodhi, H., Gilbert, D. (2011). Bootstrapping Parameter Estimation in Dynamic Systems. In: Elomaa, T., Hollmén, J., Mannila, H. (eds) Discovery Science. DS 2011. Lecture Notes in Computer Science(), vol 6926. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24477-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24477-3_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24476-6

  • Online ISBN: 978-3-642-24477-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics