Abstract
The monotonicity of positive region in PRS (Pawlak Rough Set) and DTRS (Decision-Theoretic Rough Set) are comparatively discussed in this paper. Theoretic analysis shows that the positive region in DTRS model may expand with the decrease of the attributes, which is essentially different from that of PRS model and leads to a new definition of attribute reduction in DTRS model. A heuristic algorithm for the newly defined attribute reduction in DTRS model is proposed, in which the positive region is allowed to expand instead of remaining unchanged in the process of deleting attributes. Results of experimental analysis are included to validate the theoretic analysis and quantify the effectiveness of the proposed attribute reduction algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Blaszczynski, J., Greco, S., Slowinski, R., Szelag, M.: Monotonic variable consistency rough set approaches. International Journal of Approximate Reasoning 50, 979–999 (2009)
Greco, S., Matarazzo, B., Słowiński, R.: Rough membership and bayesian confirmation measures for parameterized rough sets. In: Ślęzak, D., Wang, G., Szczuka, M.S., Düntsch, I., Yao, Y. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3641, pp. 314–324. Springer, Heidelberg (2005)
Greco, S., Matarazzo, B., Slowinski, R.: Parameterized rough set model using rough membership and Bayesian confirmation measures. International Journal of Approximate Reasoning 49, 285–300 (2008)
Herbert, J.P., Yao, J.T.: Game-theoretic risk analysis in decision-theoretic rough sets. In: Wang, G., Li, T., Grzymala-Busse, J.W., Miao, D., Skowron, A., Yao, Y. (eds.) RSKT 2008. LNCS (LNAI), vol. 5009, pp. 132–139. Springer, Heidelberg (2008)
Jia, X.Y., Shang, L., Chen, J.J.: Attribute reduction based on minimum decision cost. Journal of Frontiers of Computer Science and Technology 5, 155–160 (2011) (in Chinese)
Kotlowski, W., Dembczynski, K., Greco, S., Slowinski, R.: Stochastic dominance-based rough set model for ordinal classification. Information Sciences 178, 4019–4037 (2008)
Li, H.X., Liu, D., Zhou, X.Z.: Survey on decision-theoretic rough set model. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition) 22, 624–630 (2010) (in Chinese)
Li, H.X., Zhou, X.Z.: A multi-view decision model based on decision-theoretic rough set. In: Wen, P., Li, Y., Polkowski, L., Yao, Y., Tsumoto, S., Wang, G. (eds.) RSKT 2009. LNCS, vol. 5589, pp. 650–657. Springer, Heidelberg (2009)
Li, H.X., Zhou, X.Z.: Risk decision making based on decision-theoretic rough set: a multi-view decision model. International Journal of Computational Intelligence Systems 4, 1–11 (2011)
Li, W., Miao, D.Q., Wang, W.L., Zhang, N.: Hierarchical rough decision theoretic framework for text classification. In: Proceedings of ICCI 2010, pp. 484–489. IEEE Press, Los Alamitos (2010)
Liu, D., Li, H.X., Zhou, X.Z.: Two decades’ research on decision-theoretic rough sets. In: Proceedings of ICCI 2010, pp. 968–973. IEEE Press, Los Alamitos (2010)
Liu, D., Li, T., Hu, P., Li, H.X.: Multiple-category classification with decision-theoretic rough sets. In: Yu, J., Greco, S., Lingras, P., Wang, G., Skowron, A. (eds.) RSKT 2010. LNCS(LNAI), vol. 6401, pp. 703–710. Springer, Heidelberg (2010)
Pawlak, Z.: Rough sets. International Journal of Computer and Information Science 11, 341–356 (1982)
Pawlak, Z., Wong, S.K.M., Ziarko, W.: Rough sets: probabilistic versus deterministic approach. International Journal of Man-Machine Studies 29, 81–95 (1988)
Ślęzak, D.: Rough Sets and Bayes Factor. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets III. LNCS, vol. 3400, pp. 202–229. Springer, Heidelberg (2005)
Yao, J.T., Herbert, J.P.: Web-based support systems with rough set analysis. In: Kryszkiewicz, M., Peters, J.F., Rybiński, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 360–370. Springer, Heidelberg (2007)
Yao, Y.Y.: Decision-theoretic rough set models. In: Yao, J., Lingras, P., Wu, W.-Z., Szczuka, M.S., Cercone, N.J., Ślęzak, D. (eds.) RSKT 2007. LNCS (LNAI), vol. 4481, pp. 1–12. Springer, Heidelberg (2007)
Yao, Y.Y.: Three-way decisions with probabilistic rough sets. Information Sciences 180, 341–353 (2010)
Yao, Y.Y., Wong, S.K.M., Lingras, P.: A decision-theoretic rough set model. In: Methodologies for Intelligent Systems, vol. 5, pp. 17–24. North-Holland, New York (1990)
Yao, Y.Y., Zhao, Y.: Attribute reduction in decision-teoretic rough set models. Information Sciences 178, 3356–3373 (2008)
Yu, H., Chu, S.S., Yang, D.C.: Autonomous knowledge-oriented clustering using decision-theoretic rough set theory. In: Yu, J., Greco, S., Lingras, P., Wang, G., Skowron, A. (eds.) RSKT 2010. LNCS(LNAI), vol. 6401, pp. 687–694. Springer, Heidelberg (2010)
Ziarko, W.: Variable precision rough set model. Journal of Computer and System Sciences 46, 39–59 (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Li, H., Zhou, X., Zhao, J., Liu, D. (2011). Attribute Reduction in Decision-Theoretic Rough Set Model: A Further Investigation. In: Yao, J., Ramanna, S., Wang, G., Suraj, Z. (eds) Rough Sets and Knowledge Technology. RSKT 2011. Lecture Notes in Computer Science(), vol 6954. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24425-4_61
Download citation
DOI: https://doi.org/10.1007/978-3-642-24425-4_61
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24424-7
Online ISBN: 978-3-642-24425-4
eBook Packages: Computer ScienceComputer Science (R0)