Nothing Special   »   [go: up one dir, main page]

Skip to main content

Attribute Reduction in Decision-Theoretic Rough Set Model: A Further Investigation

  • Conference paper
Rough Sets and Knowledge Technology (RSKT 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6954))

Included in the following conference series:

Abstract

The monotonicity of positive region in PRS (Pawlak Rough Set) and DTRS (Decision-Theoretic Rough Set) are comparatively discussed in this paper. Theoretic analysis shows that the positive region in DTRS model may expand with the decrease of the attributes, which is essentially different from that of PRS model and leads to a new definition of attribute reduction in DTRS model. A heuristic algorithm for the newly defined attribute reduction in DTRS model is proposed, in which the positive region is allowed to expand instead of remaining unchanged in the process of deleting attributes. Results of experimental analysis are included to validate the theoretic analysis and quantify the effectiveness of the proposed attribute reduction algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blaszczynski, J., Greco, S., Slowinski, R., Szelag, M.: Monotonic variable consistency rough set approaches. International Journal of Approximate Reasoning 50, 979–999 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Greco, S., Matarazzo, B., Słowiński, R.: Rough membership and bayesian confirmation measures for parameterized rough sets. In: Ślęzak, D., Wang, G., Szczuka, M.S., Düntsch, I., Yao, Y. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3641, pp. 314–324. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Greco, S., Matarazzo, B., Slowinski, R.: Parameterized rough set model using rough membership and Bayesian confirmation measures. International Journal of Approximate Reasoning 49, 285–300 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Herbert, J.P., Yao, J.T.: Game-theoretic risk analysis in decision-theoretic rough sets. In: Wang, G., Li, T., Grzymala-Busse, J.W., Miao, D., Skowron, A., Yao, Y. (eds.) RSKT 2008. LNCS (LNAI), vol. 5009, pp. 132–139. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Jia, X.Y., Shang, L., Chen, J.J.: Attribute reduction based on minimum decision cost. Journal of Frontiers of Computer Science and Technology 5, 155–160 (2011) (in Chinese)

    Google Scholar 

  6. Kotlowski, W., Dembczynski, K., Greco, S., Slowinski, R.: Stochastic dominance-based rough set model for ordinal classification. Information Sciences 178, 4019–4037 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Li, H.X., Liu, D., Zhou, X.Z.: Survey on decision-theoretic rough set model. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition) 22, 624–630 (2010) (in Chinese)

    Google Scholar 

  8. Li, H.X., Zhou, X.Z.: A multi-view decision model based on decision-theoretic rough set. In: Wen, P., Li, Y., Polkowski, L., Yao, Y., Tsumoto, S., Wang, G. (eds.) RSKT 2009. LNCS, vol. 5589, pp. 650–657. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Li, H.X., Zhou, X.Z.: Risk decision making based on decision-theoretic rough set: a multi-view decision model. International Journal of Computational Intelligence Systems 4, 1–11 (2011)

    Article  Google Scholar 

  10. Li, W., Miao, D.Q., Wang, W.L., Zhang, N.: Hierarchical rough decision theoretic framework for text classification. In: Proceedings of ICCI 2010, pp. 484–489. IEEE Press, Los Alamitos (2010)

    Chapter  Google Scholar 

  11. Liu, D., Li, H.X., Zhou, X.Z.: Two decades’ research on decision-theoretic rough sets. In: Proceedings of ICCI 2010, pp. 968–973. IEEE Press, Los Alamitos (2010)

    Google Scholar 

  12. Liu, D., Li, T., Hu, P., Li, H.X.: Multiple-category classification with decision-theoretic rough sets. In: Yu, J., Greco, S., Lingras, P., Wang, G., Skowron, A. (eds.) RSKT 2010. LNCS(LNAI), vol. 6401, pp. 703–710. Springer, Heidelberg (2010)

    Google Scholar 

  13. Pawlak, Z.: Rough sets. International Journal of Computer and Information Science 11, 341–356 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  14. Pawlak, Z., Wong, S.K.M., Ziarko, W.: Rough sets: probabilistic versus deterministic approach. International Journal of Man-Machine Studies 29, 81–95 (1988)

    Article  MATH  Google Scholar 

  15. Ślęzak, D.: Rough Sets and Bayes Factor. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets III. LNCS, vol. 3400, pp. 202–229. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Yao, J.T., Herbert, J.P.: Web-based support systems with rough set analysis. In: Kryszkiewicz, M., Peters, J.F., Rybiński, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 360–370. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. Yao, Y.Y.: Decision-theoretic rough set models. In: Yao, J., Lingras, P., Wu, W.-Z., Szczuka, M.S., Cercone, N.J., Ślęzak, D. (eds.) RSKT 2007. LNCS (LNAI), vol. 4481, pp. 1–12. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Yao, Y.Y.: Three-way decisions with probabilistic rough sets. Information Sciences 180, 341–353 (2010)

    Article  MathSciNet  Google Scholar 

  19. Yao, Y.Y., Wong, S.K.M., Lingras, P.: A decision-theoretic rough set model. In: Methodologies for Intelligent Systems, vol. 5, pp. 17–24. North-Holland, New York (1990)

    Google Scholar 

  20. Yao, Y.Y., Zhao, Y.: Attribute reduction in decision-teoretic rough set models. Information Sciences 178, 3356–3373 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yu, H., Chu, S.S., Yang, D.C.: Autonomous knowledge-oriented clustering using decision-theoretic rough set theory. In: Yu, J., Greco, S., Lingras, P., Wang, G., Skowron, A. (eds.) RSKT 2010. LNCS(LNAI), vol. 6401, pp. 687–694. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  22. Ziarko, W.: Variable precision rough set model. Journal of Computer and System Sciences 46, 39–59 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, H., Zhou, X., Zhao, J., Liu, D. (2011). Attribute Reduction in Decision-Theoretic Rough Set Model: A Further Investigation. In: Yao, J., Ramanna, S., Wang, G., Suraj, Z. (eds) Rough Sets and Knowledge Technology. RSKT 2011. Lecture Notes in Computer Science(), vol 6954. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24425-4_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24425-4_61

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24424-7

  • Online ISBN: 978-3-642-24425-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics