Abstract
Aiming at the problems of histogram-based thresholding, rough set theory is applied to construct the roughness measure for segmenting color image. However, the extant roughness measure is a qualitative description of neighborhood similarity and tends to over focus on the trivial homogeneity. An improved roughness measure is proposed in this paper. The novel roughness is computed from smoothed local differences and quantified homogeneity, thus can form the accurate representation of homogeneous regions. The experimental results indicate that the segmentation based on improved roughness has good performances on most testing images.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cheng, H.D., Jiang, X.H., Sun, Y., Wang, J.L.: Color image segmentation: advances and prospects. Pattern Recognition 34, 2259–2281 (2001)
Cheng, H.D., Jiang, X.H., Wang, J.L.: Color image segmentation based on homogram thresholding and region merging. Pattern Recognition 35, 373–393 (2002)
Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(5), 603–619 (2002)
Hassanien, A.E., Abraham, A., Peters, J.F., Schaefer, G., Henry, C.: Rough Sets and Near Sets in Medical Imaging: A Review. IEEE Transactions on Information Technology in Biomedicine 13(6), 955–968 (2009)
Lindeberg, T., Romeny, B.M.T.H.: Linear scale space. Kluwer Academic Pub1ishers, Netherlands (1994)
Liu, J., Yang, Y.: Multiresolution color image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 16(7), 689–700 (1994)
Mohabey, A., Ray, A.K.: Rough set theory based segmentation of color images. In: Proceedings of 19th International Conference of the North American Fuzzy Information Processing Society, pp. 338–342 (2000)
Mushrif, M.M., Ray, A.K.: Color image segmentation: Rough-set theoretic approach. Pattern Recognition Letters 29, 483–493 (2008)
Pawlak, Z.: Rough sets. International Journal of Information and Computer Science 11(5), 314–356 (1982)
Pawlak, Z.: Some issues on rough sets. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 1–58. Springer, Heidelberg (2004)
Schaefer, G., Zhou, H.Y., Hu, Q.H., Hassanien, A.E.: Rough image colour quantisation. In: Sakai, H., Chakraborty, M.K., Hassanien, A.E., Ślęzak, D., Zhu, W. (eds.) RSFDGrC 2009. LNCS, vol. 5908, pp. 217–222. Springer, Heidelberg (2009)
Shi, J.B., Malik, J.: Normalized Cuts and Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)
Tan, K.S., Isa, N.A.M.: Color image segmentation using histogram thresholding - Fuzzy C-means hybrid approach. Pattern Recognition 44, 1–15 (2011)
The Berkeley Segmentation Dataset and Benchmark, http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
Trahanias, P.E., Venetsanopoulos, A.N.: Vector order statistics operators as color edge detectors. IEEE Transactions on Systems Man and Cybernetics Part B 26(1), 135–143 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yue, X., Miao, D., Chen, Y., Chen, H. (2011). Roughness Approach to Color Image Segmentation through Smoothing Local Difference. In: Yao, J., Ramanna, S., Wang, G., Suraj, Z. (eds) Rough Sets and Knowledge Technology. RSKT 2011. Lecture Notes in Computer Science(), vol 6954. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24425-4_57
Download citation
DOI: https://doi.org/10.1007/978-3-642-24425-4_57
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24424-7
Online ISBN: 978-3-642-24425-4
eBook Packages: Computer ScienceComputer Science (R0)