Nothing Special   »   [go: up one dir, main page]

Skip to main content

Roughness Approach to Color Image Segmentation through Smoothing Local Difference

  • Conference paper
Rough Sets and Knowledge Technology (RSKT 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6954))

Included in the following conference series:

Abstract

Aiming at the problems of histogram-based thresholding, rough set theory is applied to construct the roughness measure for segmenting color image. However, the extant roughness measure is a qualitative description of neighborhood similarity and tends to over focus on the trivial homogeneity. An improved roughness measure is proposed in this paper. The novel roughness is computed from smoothed local differences and quantified homogeneity, thus can form the accurate representation of homogeneous regions. The experimental results indicate that the segmentation based on improved roughness has good performances on most testing images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cheng, H.D., Jiang, X.H., Sun, Y., Wang, J.L.: Color image segmentation: advances and prospects. Pattern Recognition 34, 2259–2281 (2001)

    Article  MATH  Google Scholar 

  2. Cheng, H.D., Jiang, X.H., Wang, J.L.: Color image segmentation based on homogram thresholding and region merging. Pattern Recognition 35, 373–393 (2002)

    Article  MATH  Google Scholar 

  3. Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(5), 603–619 (2002)

    Article  Google Scholar 

  4. Hassanien, A.E., Abraham, A., Peters, J.F., Schaefer, G., Henry, C.: Rough Sets and Near Sets in Medical Imaging: A Review. IEEE Transactions on Information Technology in Biomedicine 13(6), 955–968 (2009)

    Article  Google Scholar 

  5. Lindeberg, T., Romeny, B.M.T.H.: Linear scale space. Kluwer Academic Pub1ishers, Netherlands (1994)

    Google Scholar 

  6. Liu, J., Yang, Y.: Multiresolution color image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 16(7), 689–700 (1994)

    Article  Google Scholar 

  7. Mohabey, A., Ray, A.K.: Rough set theory based segmentation of color images. In: Proceedings of 19th International Conference of the North American Fuzzy Information Processing Society, pp. 338–342 (2000)

    Google Scholar 

  8. Mushrif, M.M., Ray, A.K.: Color image segmentation: Rough-set theoretic approach. Pattern Recognition Letters 29, 483–493 (2008)

    Article  Google Scholar 

  9. Pawlak, Z.: Rough sets. International Journal of Information and Computer Science 11(5), 314–356 (1982)

    MathSciNet  MATH  Google Scholar 

  10. Pawlak, Z.: Some issues on rough sets. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 1–58. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Schaefer, G., Zhou, H.Y., Hu, Q.H., Hassanien, A.E.: Rough image colour quantisation. In: Sakai, H., Chakraborty, M.K., Hassanien, A.E., Ślęzak, D., Zhu, W. (eds.) RSFDGrC 2009. LNCS, vol. 5908, pp. 217–222. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Shi, J.B., Malik, J.: Normalized Cuts and Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)

    Article  Google Scholar 

  13. Tan, K.S., Isa, N.A.M.: Color image segmentation using histogram thresholding - Fuzzy C-means hybrid approach. Pattern Recognition 44, 1–15 (2011)

    Article  MATH  Google Scholar 

  14. The Berkeley Segmentation Dataset and Benchmark, http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/

  15. Trahanias, P.E., Venetsanopoulos, A.N.: Vector order statistics operators as color edge detectors. IEEE Transactions on Systems Man and Cybernetics Part B 26(1), 135–143 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yue, X., Miao, D., Chen, Y., Chen, H. (2011). Roughness Approach to Color Image Segmentation through Smoothing Local Difference. In: Yao, J., Ramanna, S., Wang, G., Suraj, Z. (eds) Rough Sets and Knowledge Technology. RSKT 2011. Lecture Notes in Computer Science(), vol 6954. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24425-4_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24425-4_57

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24424-7

  • Online ISBN: 978-3-642-24425-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics