Abstract
Many problems, such as cognitive radio, parameter control of a scanning tunnelling microscope or internet advertisement, can be modelled as non-stationary bandit problems where the distributions of rewards changes abruptly at unknown time instants. In this paper, we analyze two algorithms designed for solving this issue: discounted UCB (D-UCB) and sliding-window UCB (SW-UCB). We establish an upper-bound for the expected regret by upper-bounding the expectation of the number of times suboptimal arms are played. The proof relies on an interesting Hoeffding type inequality for self normalized deviations with a random number of summands. We establish a lower-bound for the regret in presence of abrupt changes in the arms reward distributions. We show that the discounted UCB and the sliding-window UCB both match the lower-bound up to a logarithmic factor. Numerical simulations show that D-UCB and SW-UCB perform significantly better than existing soft-max methods like EXP3.S.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, R.: Sample mean based index policies with O(logn) regret for the multi-armed bandit problem. Adv. in Appl. Probab. 27(4), 1054–1078 (1995)
Audibert, J.Y., Munos, R., Szepesvari, A.: Tuning bandit algorithms in stochastic environments. In: Hutter, M., Servedio, R.A., Takimoto, E. (eds.) ALT 2007. LNCS (LNAI), vol. 4754, pp. 150–165. Springer, Heidelberg (2007)
Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.E.: The nonstochastic multiarmed bandit problem. SIAM J. Comput. 32(1), 48–77 (2002)
Auer, P.: Using confidence bounds for exploitation-exploration trade-offs. J. Mach. Learn. Res. 3(Spec. Issue Comput. Learn. Theory), 397–422 (2002)
Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Machine Learning 47(2/3), 235–256 (2002)
Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge University Press, New York (2006)
Cesa-Bianchi, N., Lugosi, G.: On prediction of individual sequences. Ann. Statist. 27(6), 1865–1895 (1999)
Cesa-Bianchi, N., Lugosi, G., Stoltz, G.: Regret minimization under partial monitoring. Math. Oper. Res. 31(3), 562–580 (2006)
Cesa-Bianchi, N., Lugosi, G., Stoltz, G.: Competing with typical compound actions (2008)
Devroye, L., Györfi, L., Lugosi, G.: A probabilistic theory of pattern recognition. Applications of Mathematics, vol. 31. Springer, New York (1996)
Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. System Sci. 55(1, part 2), 119–139 (1997); In: Vitányi, P.M.B. (ed.) EuroCOLT 1995. LNCS, vol. 904. Springer, Heidelberg (1995)
Fuh, C.D.: Asymptotic operating characteristics of an optimal change point detection in hidden Markov models. Ann. Statist. 32(5), 2305–2339 (2004)
Garivier, A., Cappé, O.: The kl-ucb algorithm for bounded stochastic bandits and beyond. In: Proceedings of the 24rd Annual International Conference on Learning Theory (2011)
Hartland, C., Gelly, S., Baskiotis, N., Teytaud, O., Sebag, M.: Multi-armed bandit, dynamic environments and meta-bandits. In: nIPS-2006 Workshop, Online Trading Between Exploration and Exploitation, Whistler, Canada (2006)
Herbster, M., Warmuth, M.: Tracking the best expert. Machine Learning 32(2), 151–178 (1998)
Honda, J., Takemura, A.: An asymptotically optimal bandit algorithm for bounded support models. In: Proceedings of the 23rd Annual International Conference on Learning Theory (2010)
Kocsis, L., Szepesvári, C.: Discounted UCB. In: 2nd PASCAL Challenges Workshop, Venice, Italy (April 2006)
Koulouriotis, D.E., Xanthopoulos, A.: Reinforcement learning and evolutionary algorithms for non-stationary multi-armed bandit problems. Applied Mathematics and Computation 196(2), 913–922 (2008)
Lai, L., El Gamal, H., Jiang, H., Poor, H.V.: Cognitive medium access: Exploration, exploitation and competition (2007)
Lai, T.L., Robbins, H.: Asymptotically efficient adaptive allocation rules. Adv. in Appl. Math. 6(1), 4–22 (1985)
Mei, Y.: Sequential change-point detection when unknown parameters are present in the pre-change distribution. Ann. Statist. 34(1), 92–122 (2006)
Slivkins, A., Upfal, E.: Adapting to a changing environment: the brownian restless bandits. In: Proceedings of the Conference on 21st Conference on Learning Theory, pp. 343–354 (2008)
Whittle, P.: Restless bandits: activity allocation in a changing world. J. Appl. Probab. Special 25A, 287–298 (1988) a celebration of applied probability
Yu, J.Y., Mannor, S.: Piecewise-stationary bandit problems with side observations. In: ICML 2009: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 1177–1184. ACM, New York (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Garivier, A., Moulines, E. (2011). On Upper-Confidence Bound Policies for Switching Bandit Problems. In: Kivinen, J., Szepesvári, C., Ukkonen, E., Zeugmann, T. (eds) Algorithmic Learning Theory. ALT 2011. Lecture Notes in Computer Science(), vol 6925. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24412-4_16
Download citation
DOI: https://doi.org/10.1007/978-3-642-24412-4_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24411-7
Online ISBN: 978-3-642-24412-4
eBook Packages: Computer ScienceComputer Science (R0)