Nothing Special   »   [go: up one dir, main page]

Skip to main content

On Upper-Confidence Bound Policies for Switching Bandit Problems

  • Conference paper
Algorithmic Learning Theory (ALT 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6925))

Included in the following conference series:

Abstract

Many problems, such as cognitive radio, parameter control of a scanning tunnelling microscope or internet advertisement, can be modelled as non-stationary bandit problems where the distributions of rewards changes abruptly at unknown time instants. In this paper, we analyze two algorithms designed for solving this issue: discounted UCB (D-UCB) and sliding-window UCB (SW-UCB). We establish an upper-bound for the expected regret by upper-bounding the expectation of the number of times suboptimal arms are played. The proof relies on an interesting Hoeffding type inequality for self normalized deviations with a random number of summands. We establish a lower-bound for the regret in presence of abrupt changes in the arms reward distributions. We show that the discounted UCB and the sliding-window UCB both match the lower-bound up to a logarithmic factor. Numerical simulations show that D-UCB and SW-UCB perform significantly better than existing soft-max methods like EXP3.S.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R.: Sample mean based index policies with O(logn) regret for the multi-armed bandit problem. Adv. in Appl. Probab. 27(4), 1054–1078 (1995)

    MathSciNet  MATH  Google Scholar 

  2. Audibert, J.Y., Munos, R., Szepesvari, A.: Tuning bandit algorithms in stochastic environments. In: Hutter, M., Servedio, R.A., Takimoto, E. (eds.) ALT 2007. LNCS (LNAI), vol. 4754, pp. 150–165. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.E.: The nonstochastic multiarmed bandit problem. SIAM J. Comput. 32(1), 48–77 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Auer, P.: Using confidence bounds for exploitation-exploration trade-offs. J. Mach. Learn. Res. 3(Spec. Issue Comput. Learn. Theory), 397–422 (2002)

    MathSciNet  MATH  Google Scholar 

  5. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Machine Learning 47(2/3), 235–256 (2002)

    Article  MATH  Google Scholar 

  6. Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge University Press, New York (2006)

    Book  MATH  Google Scholar 

  7. Cesa-Bianchi, N., Lugosi, G.: On prediction of individual sequences. Ann. Statist. 27(6), 1865–1895 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cesa-Bianchi, N., Lugosi, G., Stoltz, G.: Regret minimization under partial monitoring. Math. Oper. Res. 31(3), 562–580 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cesa-Bianchi, N., Lugosi, G., Stoltz, G.: Competing with typical compound actions (2008)

    Google Scholar 

  10. Devroye, L., Györfi, L., Lugosi, G.: A probabilistic theory of pattern recognition. Applications of Mathematics, vol. 31. Springer, New York (1996)

    MATH  Google Scholar 

  11. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. System Sci. 55(1, part 2), 119–139 (1997); In: Vitányi, P.M.B. (ed.) EuroCOLT 1995. LNCS, vol. 904. Springer, Heidelberg (1995)

    Google Scholar 

  12. Fuh, C.D.: Asymptotic operating characteristics of an optimal change point detection in hidden Markov models. Ann. Statist. 32(5), 2305–2339 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Garivier, A., Cappé, O.: The kl-ucb algorithm for bounded stochastic bandits and beyond. In: Proceedings of the 24rd Annual International Conference on Learning Theory (2011)

    Google Scholar 

  14. Hartland, C., Gelly, S., Baskiotis, N., Teytaud, O., Sebag, M.: Multi-armed bandit, dynamic environments and meta-bandits. In: nIPS-2006 Workshop, Online Trading Between Exploration and Exploitation, Whistler, Canada (2006)

    Google Scholar 

  15. Herbster, M., Warmuth, M.: Tracking the best expert. Machine Learning 32(2), 151–178 (1998)

    Article  MATH  Google Scholar 

  16. Honda, J., Takemura, A.: An asymptotically optimal bandit algorithm for bounded support models. In: Proceedings of the 23rd Annual International Conference on Learning Theory (2010)

    Google Scholar 

  17. Kocsis, L., Szepesvári, C.: Discounted UCB. In: 2nd PASCAL Challenges Workshop, Venice, Italy (April 2006)

    Google Scholar 

  18. Koulouriotis, D.E., Xanthopoulos, A.: Reinforcement learning and evolutionary algorithms for non-stationary multi-armed bandit problems. Applied Mathematics and Computation 196(2), 913–922 (2008)

    Article  MATH  Google Scholar 

  19. Lai, L., El Gamal, H., Jiang, H., Poor, H.V.: Cognitive medium access: Exploration, exploitation and competition (2007)

    Google Scholar 

  20. Lai, T.L., Robbins, H.: Asymptotically efficient adaptive allocation rules. Adv. in Appl. Math. 6(1), 4–22 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mei, Y.: Sequential change-point detection when unknown parameters are present in the pre-change distribution. Ann. Statist. 34(1), 92–122 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Slivkins, A., Upfal, E.: Adapting to a changing environment: the brownian restless bandits. In: Proceedings of the Conference on 21st Conference on Learning Theory, pp. 343–354 (2008)

    Google Scholar 

  23. Whittle, P.: Restless bandits: activity allocation in a changing world. J. Appl. Probab. Special 25A, 287–298 (1988) a celebration of applied probability

    Article  MathSciNet  MATH  Google Scholar 

  24. Yu, J.Y., Mannor, S.: Piecewise-stationary bandit problems with side observations. In: ICML 2009: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 1177–1184. ACM, New York (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Garivier, A., Moulines, E. (2011). On Upper-Confidence Bound Policies for Switching Bandit Problems. In: Kivinen, J., Szepesvári, C., Ukkonen, E., Zeugmann, T. (eds) Algorithmic Learning Theory. ALT 2011. Lecture Notes in Computer Science(), vol 6925. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24412-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24412-4_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24411-7

  • Online ISBN: 978-3-642-24412-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics