Abstract
In this work, we propose a novel online thermal management approach based on model predictive control for 3D multi-processors system on chip (MPSoCs) using microfluidic cooling. The controller uses dynamic voltage and frequency scaling (DVFS) for the computational cores and adjusts the liquid flow rate to meet the desired performance requirements and to minimize the overall MPSoC energy consumption (MPSoC power consumption+cooling power consumption). Our experimental results illustrate that our policy satisfies performance requirements and maintains the temperature below the specified threshold, while reducing cooling energy by up to 50% compared with traditional state-of-the-art liquid cooling techniques. The proposed policy also keeps the thermal profile up to 18°C lower compared with state of the art 3D thermal management using variable-flow liquid cooling.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Coskun, A.K., et al.: Energy-Efficient Variable-Flow Liquid Cooling in 3D Stacked Architectures. In: DATE 2010 (2010)
Coskun, A.K., et al.: Modeling and dynamic management of 3D multicore systems with liquid cooling. In: VLSI-SoC (2009)
Brunschwiler, T., et al.: Interlayer cooling potential in vertically integrated packages. Microsyst. Technol. (2008)
Kongetira, P., et al.: Niagara: A 32-way multithreaded SPARC processor. IEEE Micro (2005)
Skadron, K., et al.: Temperature-aware microarchitecture: Modeling and impl. In: TACO (2004)
Coskun, A.K., et al.: Modeling and dynamic management of 3D multicore systems with liquid cooling. In: VLSISOC (2009)
Sridhar, A., et al.: 3D-ICE: Fast compact transient thermal modeling for 3D-ICs with inter-tier liquid cooling. In: ICCAD (2010)
Mukherjee, R., et al.: Physical aware frequency selection for dynamic thermal management in multi-core systems. In: ICCAD (2006)
Bemporad, A., et al.: The explicit linear quadratic regulator for constrained systems. Automatica (2002)
Zanini, F., et al.: Multicore Thermal Management with Model Predictive Control. In: ECCTD (2009)
Donald, J., et al.: Techniques for multi-core thermal management: Classif. and new exploration. In: ISCA (2006)
Coskun, A.K., et al.: Proactive temperature balancing for low cost thermal management in MPSoCs. In: ICCAD (2008)
Coskun, A.K., et al.: Temperature management in multiprocessor SoCs using online learning. In: DAC (2008)
Grant, M., et al.: CVX: Matlab software for disciplined convex programming, http://www.stanford.edu/~boyd/cvx/
Zanini, F., et al.: Online Convex Optimization-Based Algorithm For Thermal Management of MPSoCs. In: GLSVLSI (2010)
Sabry, M.M., et al.: Fuzzy Control for Enforcing Energy Efficiency in High-Performance 3D Systems. In: ICCAD (2010)
Ruggiero, M., et al.: MPARM: Exploring the Multi-Processor SoC Design Space with SystemC. The Journal of VLSI Signal Processing (2005)
Magno, M., et al.: Adaptive power control for solar harvesting multimodal wireless smart camera. In: ICDSC (2009)
Bose, P.: Power-efficient microarchitectural choices at the early design stage. In: Keynote Address on PACS (2003)
Boyd, S., et al.: Convex Optimization. Cambridge University Press, Cambridge (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zanini, F., Atienza, D., De Micheli, G. (2011). Convex-Based Thermal Management for 3D MPSoCs Using DVFS and Variable-Flow Liquid Cooling. In: Ayala, J.L., García-Cámara, B., Prieto, M., Ruggiero, M., Sicard, G. (eds) Integrated Circuit and System Design. Power and Timing Modeling, Optimization, and Simulation. PATMOS 2011. Lecture Notes in Computer Science, vol 6951. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24154-3_34
Download citation
DOI: https://doi.org/10.1007/978-3-642-24154-3_34
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24153-6
Online ISBN: 978-3-642-24154-3
eBook Packages: Computer ScienceComputer Science (R0)