Nothing Special   »   [go: up one dir, main page]

Skip to main content

Avoiding Mesh Folding in 3D Optimal Surface Segmentation

  • Conference paper
Advances in Visual Computing (ISVC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6938))

Included in the following conference series:

Abstract

The segmentation of 3D medical images is a challenging problem that benefits from incorporation of prior shape information. Optimal Surface Segmentation (OSS) has been introduced as a powerful and flexible framework that allows segmenting the surface of an object based on a rough initial prior with robustness against local minima. When applied to general 3D meshes, conventional search profiles constructed for the OSS may overlap resulting in defective segmentation results due to mesh folding. To avoid this problem, we propose to use the Gradient Vector Flow field to guide the construction of non-overlapping search profiles. As shown in our evaluation on segmenting lung surfaces, this effectively solves the mesh folding problem and decreases the average absolute surface distance error from 0.82±0.29 mm (mean±standard deviation) to 0.79±0.24 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Li, K., Wu, X., Chen, D.Z., Sonka, M.: Optimal surface segmentation in volumetric Images-A Graph-Theoretic approach. IEEE Transactions on Pattern Analysis and Machine Intelligence 28, 119–134 (2006)

    Article  Google Scholar 

  2. Yin, Y., Zhang, X., Williams, R., Wu, X., Anderson, D.D., Sonka, M.: LOGISMOS–layered optimal graph image segmentation of multiple objects and surfaces: carti- lage segmentation in the knee joint. IEEE Transactions on Medical Imaging 29, 2023–2037 (2010)

    Article  Google Scholar 

  3. Lee, K., Johnson, R.K., Yin, Y., Wahle, A., Olszewski, M.E., Scholz, T.D., Sonka, M.: Three-dimensional thrombus segmentation in abdominal aortic aneurysms using graph search based on a triangular mesh. Computers in Biology and Medicine 40, 271–278 (2010)

    Article  Google Scholar 

  4. Garvin, M.K., Abramoff, M.D., Kardon, R., Russell, S.R., Wu, X., Sonka, M.: Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search. IEEE Transactions on Medical Imaging 27, 1495–1505 (2008) PMID: 18815101

    Article  Google Scholar 

  5. Li, K., Jolly, M.: Simultaneous detection of multiple elastic surfaces with application to tumor segmentation in CT images. In: Proceedings of SPIE, San Diego, CA, USA, pp. 69143S–69143S–11 (2008)

    Google Scholar 

  6. Sun, S., McLennan, G., Hoffman, E.A., Beichel, R.: Model-based segmentation of pathological lungs in volumetric ct data. In: Proc. of Third International Workshop on Pulmonary Image Analysis, pp. 31–40 (2010)

    Google Scholar 

  7. Boykov, Y., Kolmogorov, V.: An experimental comparison of Min-Cut/Max-Flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 1124–1137 (2004) ACM ID: 1018355

    Article  MATH  Google Scholar 

  8. Song, Q., Wu, X., Liu, Y., Smith, M., Buatti, J., Sonka, M.: Optimal graph search segmentation using Arc-Weighted graph for simultaneous surface detection of bladder and prostate. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part II. LNCS, vol. 5762, pp. 827–835. Springer, Heidelberg (2009) ACM ID: 1691283

    Chapter  Google Scholar 

  9. Yin, Y., Zhang, X., Sonka, M.: Optimal multi-object multi-surface graph search segmentation: Full-joint cartilage delineation in 3d. In: Medical Image Understanding and Analysis, pp. 104–108 (2008)

    Google Scholar 

  10. Yin, Y., Song, Q., Sonka, M.: Electric field theory motivated graph construction for optimal medical image segmentation. In: Torsello, A., Escolano, F., Brun, L. (eds.) GbRPR 2009. LNCS, vol. 5534, pp. 334–342. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Yin, Y.: Multi-surface, multi-object optimal image segmentation: application in 3D knee joint imaged by MR. PhD thesis, The University of Iowa (2010)

    Google Scholar 

  12. Hassouna, M.S., Farag, A.A.: Variational curve skeletons using gradient vector ow. IEEE Transactions on Pattern Analysis and Machine Intelligence 31, 2257–2274 (2009)

    Article  Google Scholar 

  13. Xu, C., Prince, J.L.: Snakes, shapes, and gradient vector ow. IEEE Transactions on Image Processing 7, 359–369 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bauer, C., Sun, S., Beichel, R. (2011). Avoiding Mesh Folding in 3D Optimal Surface Segmentation. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2011. Lecture Notes in Computer Science, vol 6938. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24028-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24028-7_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24027-0

  • Online ISBN: 978-3-642-24028-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics