Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Construction Method of Aggregations Functions on the Set of Discrete Fuzzy Numbers

  • Conference paper
Eurofuse 2011

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 107))

  • 626 Accesses

Abstract

In this article we propose a method to construct aggregation functions on the set of discrete fuzzy numbers whose support is a set of consecutive natural numbers contained in the finite chain L = {0,1, ⋯ ,n} from a couple of aggregation functions also defined on L. In addition, if the pair of discrete aggregation functions fulfills several properties such as associativity, commutativity or idempotence, we show that this new operator will satisfy these properties too. The particular case of uninorms is studied showing that some properties and part of the structure of the uninorms is preserved under the presented construction method. Finally, we provide an application of this last operator in a decision-making problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practicioners. Studies in Fuzziness and Soft Computing, vol. 221, Springer, Heidelberg (2007)

    Google Scholar 

  2. Casasnovas, J., Riera, J.V.: Maximum and minimum of discrete fuzzy numbers. Frontiers in Artificial Intelligence and Applications: Artificial Intelligence Research and Development 163, 273–280 (2007)

    Google Scholar 

  3. Casasnovas, J., Riera, J.V.: Lattice properties of discrete fuzzy numbers under extended min and max. In: Proceedings IFSA-EUSFLAT 2009, Lisbon, pp. 647–652 (2009)

    Google Scholar 

  4. Casasnovas, J., Riera, J.V.: Extension of discrete t-norms and t-conorms to discrete fuzzy numbers. Fuzzy Sets and Systems 167, 65–81 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. De Baets, B., Mesiar, R.: Triangular norms on product lattices. Fuzzy Sets and Systems 104, 61–75 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. De Baets, B., Fodor, J., Ruiz-Aguilera, D., Torrens, J.: Idempotent Uninorms on Finite Ordinal Scales. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 17(1), 1–14 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fodor, J., Rudas, J., Bede, B.: Uninorms and Absorbing Norms with Applications to Image Processing. In: SISY 2006 4th Serbian-Hungarian Joint Symposium on Intelligent Systems, pp. 59–72 (2006)

    Google Scholar 

  8. Grabisch, M., Marichal, J.L., Mesiar, R., Pap, E.: Aggregation functions. Encyclopedia of Mathematics and its Applications, vol. 127. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  9. Herrera, F., Herrera-Viedma, E.: Linguistic decision analysis: Steps for solving decision problems under linguistic information. Fuzzy Sets and System 115, 67–82 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Klir, G., Yuan, B.: Fuzzy sets and fuzzy logic (Theory and applications). Prentice Hall, New Jersey (1995)

    MATH  Google Scholar 

  11. Kolesarova, A., Mayor, G., Mesiar, R.: Weighted ordinal means. Information Sciences 177, 3822–3830 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lopez-Molina, C., Bustince, H., Fernandez, J., Couto, P., de Baets, B.: A gravitational approach to edge detection based on triangular norms. Pattern Recognition 43, 3730–3741 (2010)

    Article  MATH  Google Scholar 

  13. Mas, M., Mayor, G., Torrens, J.: t-operators and uninorms on a finite totally ordered set. Int. J. of Intelligent Systems 14, 909–922 (1999)

    Article  MATH  Google Scholar 

  14. Mata, F., Martínez, L., Martínez, J.C.: Penalizing manipulation strategies in consensus processes. In: Proceedings of ESTYLF 2008, Mieres, Spain, pp. 485–491 (2008)

    Google Scholar 

  15. Mayor, G., Torrens, J.: Triangular norms on discrete settings. In: Klement, E.P., Mesiar, R. (eds.) Logical, Algebraic, Analytic, and Probabilistic Aspects of Triangular Norms, pp. 189–230. Elsevier, Netherlands (2005)

    Chapter  Google Scholar 

  16. Riera, J.V., Torrens, J.: Aggregation of subjective evaluations based on discrete fuzzy numbers. Submitted to Fuzzy Sets and Systems

    Google Scholar 

  17. Voxman, W.: Canonical representations of discrete fuzzy numbers. Fuzzy Sets and Systems 54, 457–466 (2001)

    Article  MathSciNet  Google Scholar 

  18. Wang, G., Wu, C., Zhao, C.: Representation and operations of discrete fuzzy numbers. Southeast Asian Bulletin of Mathematics 28, 1003–1010 (2005)

    MathSciNet  Google Scholar 

  19. Yager, R.: Defending against strategic manipulation in uninorm-based multi-agent decision making. European Journal of Operational Research 141, 217–232 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Yager, R.: Using Importances in Group Preference Aggregation to Block Strategic Manipulation. In: Studies in Fuzziness and Soft Computing, Aggregation operators, pp. 177–191. Physica-Verlag, Heidelberg (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Riera, J.V., Torrens, J. (2011). A Construction Method of Aggregations Functions on the Set of Discrete Fuzzy Numbers. In: Melo-Pinto, P., Couto, P., Serôdio, C., Fodor, J., De Baets, B. (eds) Eurofuse 2011. Advances in Intelligent and Soft Computing, vol 107. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24001-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24001-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24000-3

  • Online ISBN: 978-3-642-24001-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics