Nothing Special   »   [go: up one dir, main page]

Skip to main content

Fuzzy Linear Programming in Practice: An Application to the Spanish Football League

  • Chapter
Fuzzy Optimization

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 254))

Abstract

FLP problems are perhaps one of the most and best studied topics of Soft Computing, and are among the most fruitful in applications and in theoretical and practical results. Areas of application of FLP problems are many and varied and in fact suppose an extraordinary example of technology transfer in action. In this paper, Fuzzy Linear Programming models are applied to the European football game in which the inherent uncertainty of the parameters relating to the football teams in the Spanish Football League serve to establish these models and so optimize the returns of the investments made to maintain a high quality competition. In this context, fuzzy DEA models are established which provide teams predictions as to their efficiency score. At the end of the study we offer some experiments using data from the Spanish Football League 2006/07.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Banker, R.D., Charnes, A., Cooper, W.W.: Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Sci. 30(9), 1078–1092 (1984)

    Article  MATH  Google Scholar 

  2. Bellman, R.E., Zadeh, L.A.: Decision Making in a Fuzzy Environment. Management Science 17(B)4, 141–164 (1970)

    Google Scholar 

  3. Briec, W.: A graph-type extension off arrell technical efficiency measure. J. Prod. Anal. 8(1), 95–110 (1997)

    Article  Google Scholar 

  4. Cadenas, J.M., Verdegay, J.L.: Using Fuzzy Numbers in Linear Programming. IEEE Transactions on Systems, Man, and Cybernetics 27(B)6, 1017–1022 (1997)

    Google Scholar 

  5. Cadenas, J.M., Verdegay, J.L.: Modelos de Optimización con Datos Imprecisos, Univesidad de Murcia, Servicio de Publicaciones (1999)

    Google Scholar 

  6. Campos, L., Verdegay, J.L.: Linear Programming Problems and Ranking of Fyzzy Numbers. Fuzzy Sets and Systems 32, 1–11 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  7. Carlsson, C., Korhonen, P.: A parametric approach to fuzzy linear programming. Fuzzy Sets and Systems 20, 17–30 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  8. Carmichael, F., Thomas, D.: Production and efficiency in team sports: an investigation of rugby league football. Applied Economics 27, 859–869 (1995)

    Article  Google Scholar 

  9. Carmichael, F., Thomas, D., Ward, R.: Team performance: the case of English premiership football. Managerial and Decision Economics 21, 31–45 (2000)

    Article  Google Scholar 

  10. Chambers, R.G., Chung, Y., FWare, R.: BeneHt and distance functions. J. Econom. Theory 70(2), 407–419 (1996)

    Article  MATH  Google Scholar 

  11. Charnes, A., Cooper, W.W., Rhodes, E.: Measuring the efficiency of decision making units. European J. Oper. Res. 2(6), 429–444 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chen, C.B., Klein, C.M.: A simple approach to ranking a group of aggregated fuzzy utilities. IEEE Transaction on System, Man and Cybernetics 27(1), 26–35 (1997)

    Article  MathSciNet  Google Scholar 

  13. Chen, S., Hwang, C.L.: Fuzzy multiple attribute decision making. Spring-Veriag, New York (1992)

    MATH  Google Scholar 

  14. Cooper, W.W., Seiford, L.M., Tone, K.: Data envelopment analysis. Kluwer, Boston (1999)

    MATH  Google Scholar 

  15. Dawson, P., Dobson, S., Gerrar, B.: Stochastic frontiers and the temporal structure of managerial efficiency in English soccer. Journal of Sports Economics 1(4), 341–362 (2000)

    Article  Google Scholar 

  16. Delgado, M., Verdegay, J.L., Vila, M.A.: Imprecise costs in mathematical programming problems. Control and Cybernet. 16(2), 113–121 (1987)

    MATH  MathSciNet  Google Scholar 

  17. Delgado, M., Verdegay, J.L., Vila, M.A.: A general model for fuzzy linear programming. Fuzzy Sets and systems 29, 21–29 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  18. Dubois, D., Prade, H.: Operations on Fuzzy Numbers. International Journal Systems Science 9, 613–626 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  19. Dubois, D., Prade, H.: Fuzzy Sets and Systems. Theory and Applications. Academic Press, London (1980)

    MATH  Google Scholar 

  20. Entani, T., Maeda, Y., Tanaka, H.: Dual models ofinterval DEA and its extension to interval data. European J. Oper. Res 136, 32–45 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. FWare, R., Grosskopf, S., Lovell, C.A.K.: The Measurement of Efficiency of Production. Kluwer-Nijho Publishing, Dordrecht-Hague (1985)

    Google Scholar 

  22. FWare, R., Lovell, C.A.K.: Measuring the technical efficiency of production. J. Econom. Theory 19, 150–162 (1978)

    Article  MathSciNet  Google Scholar 

  23. Fedrizzi, M., Kacprzyk, J., Verdegay, J.L.: A Survey of Fuzzy Optimization and Fuzzy Mathematical Programming. In: Fedrizzi, M., Kacprzyk, J., Roubens, M. (eds.) Interactive Fuzzy Optimization. Springer, Berlin (1991)

    Google Scholar 

  24. Govan, A.Y., Langville, A.N., Meyer, C.D.: Offense-Defense Approach to Ranking Team Sports. Journal of Quantitative Analysis in Sports 5(1) (2009), http://www.bepress.com/jqas/vol5/iss1/4

  25. Guh, Y.-Y.: Data Envelopment Analysis in Fuzzy Environment. Information and Management Sciences 12(2), 51–65 (2001)

    MATH  MathSciNet  Google Scholar 

  26. Guo, P., Tanaka, H.: Fuzzy DEA: a perceptual evaluation method. Fuzzy Sets and Systems 119, 149–160 (2001)

    Article  MathSciNet  Google Scholar 

  27. Hougaard, J.L.: Fuzzy scores of technical efficiency. European J. Oper. Res. 115, 529–541 (1999)

    Article  MATH  Google Scholar 

  28. Ishibuchi, H., Tanaka, H.: Multipleobjective programming in optimization of the interval objective function. EJOR 48, 219–225 (1990)

    Article  MATH  Google Scholar 

  29. Kao, C., Liu, S.T.: Fuzzy efficiency measures in data envelopment analysis. Fuzzy Sets and Systems 119, 149–160 (2000)

    Google Scholar 

  30. León, T., Liern, V., Ruiz, J., Sirvent, I.: A Possibilistic Programming Approach to the Assessment of Efficiency with DEA Models. Fuzzy Sets and Systems 139, 407–419 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  31. Maudos, J., Pastor, J.M., Serrano, L.: Convergencia en las regiones espan̈olas: cambio técnico, eficiencia y productividad. Revista Espan̈ola de Economía 15(12), 235–264 (1998)

    Google Scholar 

  32. Requena, I.: Redes Neuronales en problemas de decisión con ambiente difuso, Tesis doctoral, Universidad de Granada (1992)

    Google Scholar 

  33. Rommelfanger, H., Hanuscheck, R., Wolf, J.: Linear programming with fuzzy objectives. Fuzzy Sets and Systems 29, 31–48 (1990)

    Article  MathSciNet  Google Scholar 

  34. Rottenberg, S.: The baseball players labor-market. Journal of Political Economy 64, 242–258 (1956)

    Article  Google Scholar 

  35. Schofield, J.A.: Production functions in the sports industry: an empirical analysis of professional cricket. Applied Economics 20, 177–193 (1988)

    Article  MathSciNet  Google Scholar 

  36. Scott, F.A., Long, J.E., Somppi, K.: Salary vs marginal revenue product under monopsony and competition: the case of professional basketball. Atlantic Economic Journal 13, 50–59 (1985)

    Article  Google Scholar 

  37. Scully, G.W.: Pay and performance in major league baseball. American Economic Review 64, 915–930 (1974)

    Google Scholar 

  38. Sengupta, J.K.: A fuzzy systems approach in data envelopment analysis. Comput. Math. Appl. 24, 259–266 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  39. Sloane, P.J.: The economics of professional football, the football club as a utility maximiser. Scottish Journal of Political Economy 8, 121–146 (1971)

    Article  Google Scholar 

  40. Sloane, P.J.: The economic of sport. Economic Affairs 17 (1997) (special issue)

    Google Scholar 

  41. Tanaka, H., Okuda, T., Asai, K.: On Fuzzy Mathematical Programming. Journal of Cybernetics 3(4), 37–46 (1974)

    Article  MathSciNet  Google Scholar 

  42. Tanaka, H., Ichihashi, H., Asai, F.: A formulation of fuzzy linear programming problems based a comparison of fuzzy numbers. Control and Cybernet. 13, 185–194 (1984)

    MATH  MathSciNet  Google Scholar 

  43. Triantis, K., Girod, O.: A mathematical programming approach for measuring technical efficiency in a fuzzy environment. J. Prod. Anal. 10, 85–102 (1998)

    Article  Google Scholar 

  44. Verdegay, J.L.: Fuzzy Mathematical Programming. In: Gupta, M.M., Sanchez, E. (eds.) Fuzzy Information and Decisión Processes (1982)

    Google Scholar 

  45. Verdegay, J.L., Yager, R.R., Bonissone, P.P.: On heuristics as a fundamental constituent of Soft Computing. Fuzzy Sets and Systems 159, 846–855 (2008)

    Article  MathSciNet  Google Scholar 

  46. Wang, X., Kerre, E.E.: Reasonable properties for the ordering of fuzzy quantities (I) and (II). Fuzzy Sets and Systems 118, 375–385, 387–405 (2001)

    Google Scholar 

  47. Zadeh, L.A.: Fuzzy Sets. Information and Control 8, 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  48. Zadeh, L.A.: The Concept of a Linguistic Variable and its Applications to Approximate Reasoning. Part I. Information Sciences 8, 199–249 (1975); Part II. Information Sciences 8, 301–357 (1975); Part III. Information Sciences 9, 43–80 (1975)

    Google Scholar 

  49. Zak, T.A., Huang, C.J., Siegfried, J.J.: Production efficiency: the case of professional basketball. Journal of Business 52, 379–392 (1979)

    Article  Google Scholar 

  50. Zimmermann, H.J.: Description and Optimization of Fuzzy Systems. International Journal of General Systems 2, 209–215 (1976)

    Article  Google Scholar 

  51. Zhu, Q., Lee, E.S.: Comparison and Ranking of Fuzzy Numbers. In: Kacprzyk, J., Fedrizzi, M. (eds.) Fuzzy Regression Analysis. Onmitech Press Warsan/Physica-Verlag (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cadenas, J.M., Liern, V., Sala, R., Verdegay, J.L. (2010). Fuzzy Linear Programming in Practice: An Application to the Spanish Football League. In: Lodwick, W.A., Kacprzyk, J. (eds) Fuzzy Optimization. Studies in Fuzziness and Soft Computing, vol 254. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13935-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13935-2_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13934-5

  • Online ISBN: 978-3-642-13935-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics