Nothing Special   »   [go: up one dir, main page]

Skip to main content

Mathematical Approaches for Fuzzy Portfolio Selection Problems with Normal Mixture Distributions

  • Chapter
Fuzzy Optimization

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 254))

Abstract

This chapter considers some versatile portfolio selection models with general normal mixture distributions and fuzzy or interval numbers. Then, these mathematical approaches to obtain the optimal portfolio are developed. Furthermore, in order to compare our proposed models with standard models and represent the advantage of our proposed models, a numerical example is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bawa, V.S., Lindenberg, E.B.: Capital market equilibrium in a mean-lower partial moment framework. Journal of Financial Economics 5, 189–200 (1977)

    Article  Google Scholar 

  2. Bilbao-Terol, A., Perez-Gladish, B., Arenas-Parra, M., Rodriguez-Uria, M.V.: Fuzzy compromise programming for portfolio selection. Applied Mathematics and Computation 173, 251–264 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Carlsson, C., Fuller, R., Majlender, P.: A possibilistic approach to selecting portfolios with highest utility score. Fuzzy Sets and Systems 131, 12–21 (2002)

    MathSciNet  Google Scholar 

  4. Dinkelbach, W.: On nonlinear fractional programming. Management Science 13, 492–498 (1967)

    Article  MathSciNet  Google Scholar 

  5. Elton, E.J., Gruber, M.J.: Modern Portfolio Theory and Investment Analysis. Wiley, New York (1995)

    Google Scholar 

  6. Guo, P., Tanaka, H.: Possibility data analysis and its application to portfolio selection problems. Fuzzy Economic Rev. 3, 3–23 (1998)

    Google Scholar 

  7. Hasuike, T., Ishii, H.: Probability maximization model of portfolio selection problem under ambiguity. Central European Journal of Operational Research (to appear)

    Google Scholar 

  8. Hasuike, T., Katagiri, H., Ishii, H.: Portfolio selection problems with random fuzzy variable returns. In: Proceedings of IEEE International Conference on Fuzzy Systems 2007, pp. 416–421 (2007)

    Google Scholar 

  9. Hasuike, T., Katagiri, H., Ishii, H.: Probability Maximization Model of 0-1 Knapsack Problem with Random Fuzzy Variables. In: Proceedings of 2008 IEEE World Congress in Computing Intelligence (WCCI 2008), IEEE International Conference on Fuzzy Systems 2008, pp. 548–554 (2008)

    Google Scholar 

  10. Huang, X.: Fuzzy chance-constrained portfolio selection. Applied Mathematics and Computation 177, 500–507 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hung, X.: Two new models for portfolio selection with stochastic returns taking fuzzy information. European Journal of Operational Research 180, 396–405 (2007)

    Article  MathSciNet  Google Scholar 

  12. Inuiguchi, M., Ramik, J.: Possibilisitc linear programming: A brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem. Fuzzy Sets and Systems 111, 3–28 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Inuiguchi, M., Tanino, T.: Portfolio selection under independent possibilistic information. Fuzzy Sets and Systems 115, 83–92 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Katagiri, H., Ishii, H., Sakawa, M.: On fuzzy random linear knapsack problems. Central European Journal of Operations Research 12(1), 59–70 (2004)

    MATH  MathSciNet  Google Scholar 

  15. Katagiri, H., Sakawa, M., Ishii, H.: A study on fuzzy random portfolio selection problems using possibility and necessity measures. Scientiae Mathematicae Japonicae 65(2), 361–369 (2005)

    MathSciNet  Google Scholar 

  16. Konno, H.: Piecewise linear risk functions and portfolio optimization. Journal of Operations Research Society of Japan 33, 139–156 (1990)

    MATH  MathSciNet  Google Scholar 

  17. Konno, H., Shirakawa, H., Yamazaki, H.: A mean-absolute deviation-skewness portfolio optimization model. Annals of Operations Research 45, 205–220 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lai, H.C., Wu, S.Y.: On linear semi-infinite programming problems: an algorithm. Numerical Functional Analysis and Optimization 13, 287–304 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  19. Luenberger, D.G.: Investment Science. Oxford Univ. Press, Oxford (1997)

    Google Scholar 

  20. Markowitz, H.: Portfolio Selection. Wiley, New York (1959)

    Google Scholar 

  21. McNeil, A.J., Frey, R., Embrechts, P.: Quantitative Risk Management: Concepts, Techniques & Tools. Princeton University Press, Princeton (2005)

    MATH  Google Scholar 

  22. Rockafellar, R.T., Uryasev, S.: Optimization of conditional value-at-risk. Journal of Risk 2(3), 1–21 (2000)

    Google Scholar 

  23. Steinbach, M.C.: Markowitz revisited: Mean-variance models in financial portfolio analysis. SIAM Review 43(1), 31–85 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  24. Tanaka, H., Guo, P.: Portfolio selection based on upper and lower exponential possibility distributions. European Journal of Operational Researches 114, 115–126 (1999)

    Article  MATH  Google Scholar 

  25. Tanaka, H., Guo, P., Turksen, I.B.: Portfolio selection based on fuzzy probabilities and possibility distributions. Fuzzy Sets and Systems 111, 387–397 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  26. Watada, J.: Fuzzy portfolio selection and its applications to decision making. Tatra Mountains Math. Pub. 13, 219–248 (1997)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hasuike, T., Ishii, H. (2010). Mathematical Approaches for Fuzzy Portfolio Selection Problems with Normal Mixture Distributions. In: Lodwick, W.A., Kacprzyk, J. (eds) Fuzzy Optimization. Studies in Fuzziness and Soft Computing, vol 254. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13935-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13935-2_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13934-5

  • Online ISBN: 978-3-642-13935-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics