Nothing Special   »   [go: up one dir, main page]

Skip to main content

Ant Feature Selection Using Fuzzy Decision Functions

  • Chapter
Fuzzy Optimization

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 254))

Abstract

One of the most important stages in data preprocessing for data mining is feature selection. Real-world data analysis, data mining, classification and modeling problems usually involve a large number of candidate inputs or features. Less relevant or highly correlated features decrease in general the classification accuracy, and enlarge the complexity of the classifier. Feature selection is a multi-criteria optimization problem with contradictory objectives, which are difficult to properly describe by conventional cost functions. This chapter proposes the use of fuzzy optimization to improve the performance of this type of system, since it allows for an easier and more transparent description of the criteria used in the feature selection process. In our previous work, an ant colony optimization algorithm for feature selection was proposed, which minimized two objectives: number of features and classification error. In this chapter, a fuzzy objective function is proposed to cope with the difficulty of weighting the different criteria involved in the optimization algorithm. The application of fuzzy feature selection to two benchmark problems show the usefulness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Asuncion, A., Newman, D.J.: UCI machine learning repository (2007)

    Google Scholar 

  2. Bellman, R.E., Zadeh, L.A.: Decision-making in a fuzzy environment. Management Science 17(4), 141–164 (1970)

    Article  MathSciNet  Google Scholar 

  3. Dorigo, M.: Optimization, Learning and Natural Algorithms (in Italian). PhD thesis (1992)

    Google Scholar 

  4. Dorigo, M., Birattari, M., Stützle, T.: Ant colony optimization. IEEE Computational Intelligence Magazine 1(4), 28–39 (2006)

    Google Scholar 

  5. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, vol. 2. Wiley–Interscience Publication, Chichester (2001)

    MATH  Google Scholar 

  6. Dyckhoff, H., Pedrycz, W.: Generalized means as model of compensative connectives. Fuzzy Sets and Systems 14, 143–154 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  7. Grabisch, M., Nguyen, H.T., Walker, E.A.: Fundamentals of uncertainty calculi with applications to fuzzy inference. In: Mathematical and Statistical Methods, vol. 30. Kluwer Academic Publishers, Dordrecht (1995)

    Google Scholar 

  8. Gustafson, D.E., Kessel, W.C.: Fuzzy clustering with a fuzzy covariance matrix. In: Proceedings of the 18th IEEE Conference on Decision and Control, San Diego, CA, USA, pp. 761–766 (1979)

    Google Scholar 

  9. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. Journal of Machine Learning Research 3, 1157–1182 (2003)

    Article  MATH  Google Scholar 

  10. Motoda, H., Liu, H.: Feature Selection for Knowledge Discovery and Data Mining. Kluwer Academic Publishers, Dordrecht (1998)

    MATH  Google Scholar 

  11. Jensen, R., Shen, Q.: Finding rough set reducts with ant colony optimization. In: Proceedings of the 2003 UK Workshop on Computational Intelligence, pp. 15–22 (2003)

    Google Scholar 

  12. Jensen, R., Shen, Q.: Fuzzy-rough data reduction with ant colony optimization. Fuzzy Sets and Systems 149, 5–20 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kaymak, U., Sousa, J.M.: Weighted constraint aggregation in fuzzy optimization. Constraints 8(1), 61–78 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kaymak, U., van Nauta Lemke, H.R.: A sensitivity analysis approach to introducing weight factors into decision functions in fuzzy multicriteria decision making. Fuzzy Sets and Systems 97(2), 169–182 (1998)

    Article  MathSciNet  Google Scholar 

  15. Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic: theory and applications. Prentice-Hall, Upper Saddle River (1995)

    MATH  Google Scholar 

  16. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proc. International Joint Conf. Artificial Intelligence (1995)

    Google Scholar 

  17. Mendonça, L.F., Sousa, J.M.C., Kaymak, U., Sá da Costa, J.M.G.: Weighting goals and comstraints in fuzzy predictive control. Journal of Intelligent and Fuzzy Systems 17(5), 517–532 (2006)

    MATH  Google Scholar 

  18. Roubos, J.A., Setnes, M., Abonyi, J.: Learning fuzzy classification rules from labeled data. International Journal of Information Sciences 150(1), 77–93 (2003)

    MathSciNet  Google Scholar 

  19. Salido, J.M.F., Murakami, S.: Extending Yager’s orness concept for the OWA aggregators to other mean operators. Fuzzy Sets and Systems 139(3), 515–542 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Setnes, M., Roubos, J.A.: GA-fuzzy modeling and classification: complexity and performance. IEEE Transactions on Fuzzy Systems 8(5), 509–522 (2000)

    Article  Google Scholar 

  21. Silva, C.A., Sousa, J.M.C., Runkler, T.A.: Rescheduling and optimization of logistic processes using GA and ACO. Engineering Applications of Artificial Intelligence 21(3), 343–352 (2007)

    Article  MATH  Google Scholar 

  22. Silva, C.A., Sousa, J.M.C., Runkler, T.A., Sá da Costa, J.M.G.: Distributed optimization of a logistic system and its suppliers using ant colony optimization. International Journal of Systems Science 37(8), 503–512 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Silva, C.A., Sousa, J.M.C., Runkler, T.A., Sá da Costa, J.M.G.: Distributed supply chain management using ant colony optimization. To appear in European Journal of Operational Research (2009), doi:10.1016/j.ejor.2008.11.021

    Google Scholar 

  24. Sousa, J.M.C., Kaymak, U.: Fuzzy Decision Making in Modeling and Control. World Scientific/Imperial College, Singapore/UK (2002)

    Book  MATH  Google Scholar 

  25. Sousa, J.M.: Optimization issues in predictive control with fuzzy objective functions. International Journal of Intelligent Systems 15(9), 879–899 (2000)

    Article  MATH  Google Scholar 

  26. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modelling and control. IEEE Transactions on Systems, Man and Cybernetics 15(1), 116–132 (1985)

    MATH  Google Scholar 

  27. Vieira, S.M., Sousa, J.M.C., Runkler, T.A.: Fuzzy classification in ant feature selection. In: Proc. of 2008 IEEE World Congress on Computational Intelligence, WCCI 2008, pp. 1763–1769, Hong Kong, China (June 2008)

    Google Scholar 

  28. Vieira, S.M., Sousa, J.M.C., Runkler, T.A.: Two cooperative ant colonies for feature selection using fuzzy models. Submitted to Expert Systems with Applications (2009)

    Google Scholar 

  29. Yager, R.R.: Fuzzy decision making including unequal objectives. Fuzzy Sets Systems 1, 87–95 (1978)

    Article  MATH  Google Scholar 

  30. Yager, R.R.: General multiple-objective decision functions and linguistically quantified statements. International Journal of Man-Machine Studies 21(5), 389–400 (1984)

    Article  MATH  Google Scholar 

  31. Yager, R.R.: On a general class of fuzzy connectives. Fuzzy Sets and Systems 4, 235–242 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  32. Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Transaction Systems, Man and Cybernetics 18(1), 183–190 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  33. Zimmermann, H.J.: Description and optimization of fuzzy systems. International Journal of General Systems 2, 209–215 (1976)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vieira, S.M., Sousa, J.M.C., Kaymak, U. (2010). Ant Feature Selection Using Fuzzy Decision Functions. In: Lodwick, W.A., Kacprzyk, J. (eds) Fuzzy Optimization. Studies in Fuzziness and Soft Computing, vol 254. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13935-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13935-2_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13934-5

  • Online ISBN: 978-3-642-13935-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics