Abstract
In this chapter we discuss a wide class of combinatorial optimization problems with a linear sum and a bottleneck cost function. We first investigate the case when the weights in the problem are modeled as closed intervals. We show how the notion of optimality can be extended by using a concept of a deviation interval. In order to choose a solution we adopt a robust approach. We seek a solution that minimizes the maximal regret, that is the maximal deviation from optimum over all weight realizations, called scenarios, which may occur. We then explore the case in which the weights are specified as fuzzy intervals. We show that under fuzzy weights the problem has an interpretation consistent with possibility theory. Namely, fuzzy weights induce a possibility distribution over the scenario set and the possibility and necessity measures can be used to extend the optimality evaluation and the min-max regret approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
References
Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice-Hall, Englewood Cliffs (1993)
Aissi, H., Bazgan, C., Vanderpooten, D.: Min-max and min-max regret versions of combinatorial optimization problems: A survey. European Journal of Operational Research (2008) doi:10.1016/j.ejor.2008.09.012
Aissi, H., Bazgan, C., Vanderpooten, D.: Complexity of the min-max and min-max regret assignment problems. Operations Research Letters 33(6), 634–640 (2005)
Aissi, H., Bazgan, C., Vanderpooten, D.: Complexity of the min-max (regret) versions of cut problems. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 789–798. Springer, Heidelberg (2005)
Aron, I.D., Hentenryck, P.V.: A constraint satisfaction approach to the robust spanning tree problem with interval data. In: Darwiche, A., Friedman, N. (eds.) UAI 2002, Proceedings of the 18th Conference in Uncertainty in Artificial Intelligence, University of Alberta, Edmonton, Alberta, Canada, August 1-4, pp. 18–25. Morgan Kaufmann, San Francisco (2002)
Aron, I.D., Hentenryck, P.V.: On the complexity of the robust spanning tree problem with interval data. Operations Research Letters 32(1), 36–40 (2004)
Averbakh, I.: Minmax regret solutions for minimax optimization problems with uncertainty. Operations Research Letters 27(2), 57–65 (2000)
Averbakh, I.: On the complexity of a class of combinatorial optimization problems with uncertainty. Mathematical Programming 90, 263–272 (2001)
Averbakh, I., Lebedev, V.: On the complexity of minmax regret linear programming. European Journal of Operational Research 160(1), 227–231 (2005)
Camerini, P.M.: The minimax spanning tree problem and some extensions. Information Processing Letters 7, 10–14 (1978)
Chan, T.: Finding the shortest bottleneck edge in a parametric minimum spanning tree. In: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 232–240 (2005)
Conde, E.: An improved algorithm for selecting p items with uncertain returns according to the minmax-regret criterion. Mathematical Programming 100(2), 345–353 (2004)
Dubois, D., Fargier, H., Galvagnon, V.: On latest starting times and floats in activity networks with ill-known durations. European Journal of Operational Research 147, 266–280 (2003)
Dubois, D., Prade, H.: Possibility Theory: An Approach to Computerized Processing of Uncertainty. Plenum Press (1988)
Fernandez-Baca, D., Slutzki, G.: Solving parametric problems on trees. Journal of Algorithms 10 (1989)
Fortin, J., Zieliński, P., Dubois, D., Fargier, H.: Interval analysis in scheduling. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 226–240. Springer, Heidelberg (2005)
Gabow, H.N., Tarjan, R.E.: Algorithms for two bottleneck optimization problems. Journal of Algorithms 9, 411–417 (1988)
Garfinkel, R.S., Nemhauser, G.L.: Integer Programming. John Wiley & Sons, Chichester (1972)
Inuiguchi, M.: On possibilistic/fuzzy optimization. In: Melin, P., Castillo, O., Aguilar, L.T., Kacprzyk, J., Pedrycz, W. (eds.) IFSA 2007. LNCS (LNAI), vol. 4529, pp. 351–360. Springer, Heidelberg (2007)
Inuiguchi, M., Sakawa, M.: Robust optimization under softness in a fuzzy linear programming problem. International Journal of Approximate Reasonning 18(1-2), 21–34 (1998)
Kall, P., Wallace, S.W.: Stochastic Programming. Wiley, Chichester etc. (1994)
Kasperski, A.: Discrete Optimization with Interval Data. Minmax Regret and Fuzzy Approach. Studies in Fuzziness and Soft Computing, vol. 228. Springer, Heidelberg (2008)
Kasperski, A., Zieliński, P.: An approximation algorithm for interval data minmax regret combinatorial optimization problems. Information Processing Letters 97(5), 177–180 (2006)
Kasperski, A., Zieliński, P.: The robust shortest path problem in series-parallel multidigraphs with interval data. Operations Research Letters 34(1), 69–76 (2006)
Kasperski, A., Zieliński, P.: On combinatorial optimization problems on matroids with uncertain weights. European Journal of Operational Research 177(2), 851–864 (2007)
Kasperski, A., Zieliński, P.: On the existence of an FPTAS for minmax regret combinatorial optimization problems with interval data. Operations Research Letters 35(4), 525–532 (2007)
Kasperski, A., Zieliński, P.: Using gradual numbers for solving fuzzy-valued combinatorial optimization problems. In: Melin, P., Castillo, O., Aguilar, L.T., Kacprzyk, J., Pedrycz, W. (eds.) IFSA 2007. LNCS (LNAI), vol. 4529, pp. 656–665. Springer, Heidelberg (2007)
Kasperski, A., Zieliński, P.: Minmax regret approach and optimality evaluation in combinatorial optimization problems with interval and fuzzy weights. European Journal of Operational Research (2009) (to appear)
Kouvelis, P., Yu, G.: Robust Discrete Optimization and Its Applications. Kluwer Academic Publishers, Boston (1997)
Lawler, E.: Combinatorial Optimization: Networks and Matroids. Saunders College Publishing, Fort Worth (1976)
Luce, R.D., Raiffa, H.: Games and Decisions. Introduction and Critical Survey. Dover Publications, Inc., New York (1957)
Montemanni, R.: A benders decomposition approach for the robust spanning tree problem with interval data. European Journal of Operational Research 174(3), 1479–1490 (2006)
Montemanni, R., Gambardella, L.M.: A branch and bound algorithm for the robust spanning tree problem with interval data. European Journal of Operational Research 161(3), 771–779 (2005)
Montemanni, R., Gambardella, L.M., Donati, A.V.: A branch and bound algorithm for the robust shortest path problem with interval data. Operations Research Letters 32(3), 225–232 (2004)
Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Dover Pub. (1998)
Punnen, A.P.: A linear time algorithm for the maximum capacity path problem. European Journal of Operational Research 53, 402–404 (1991)
Punnen, A.P.: A fast algorithm for a class of bottleneck problems. Computing 56, 397–401 (1996)
Raghavan, S., Ball, M.O., Trichur, V.S.: Bicriteria product design optimization: An efficient solution procedure using and/or trees. Naval Research Logistics 49, 574–592 (2002)
Savage, L.J.: The Foundations of Statistics. John Wiley and Sons, New York (1951)
Yaman, H., Karasan, O.E., Pinar, M.Ç.: The robust spanning tree problem with interval data. Operations Research Letters 29(1), 31–40 (2001)
Young, N., Tarjan, R., Orlin, J.: Faster parametric shortest path minimum-balance algorithms. Networks 21, 205–221 (1991)
Zieliński, P.: The computational complexity of the relative robust shortest path problem with interval data. European Journal of Operational Research 158(3), 570–576 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Kasperski, A., Zieliński, P. (2010). Computing Min-Max Regret Solutions in Possibilistic Combinatorial Optimization Problems. In: Lodwick, W.A., Kacprzyk, J. (eds) Fuzzy Optimization. Studies in Fuzziness and Soft Computing, vol 254. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13935-2_13
Download citation
DOI: https://doi.org/10.1007/978-3-642-13935-2_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13934-5
Online ISBN: 978-3-642-13935-2
eBook Packages: EngineeringEngineering (R0)