Nothing Special   »   [go: up one dir, main page]

Skip to main content

Computing Min-Max Regret Solutions in Possibilistic Combinatorial Optimization Problems

  • Chapter
Fuzzy Optimization

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 254))

Abstract

In this chapter we discuss a wide class of combinatorial optimization problems with a linear sum and a bottleneck cost function. We first investigate the case when the weights in the problem are modeled as closed intervals. We show how the notion of optimality can be extended by using a concept of a deviation interval. In order to choose a solution we adopt a robust approach. We seek a solution that minimizes the maximal regret, that is the maximal deviation from optimum over all weight realizations, called scenarios, which may occur. We then explore the case in which the weights are specified as fuzzy intervals. We show that under fuzzy weights the problem has an interpretation consistent with possibility theory. Namely, fuzzy weights induce a possibility distribution over the scenario set and the possibility and necessity measures can be used to extend the optimality evaluation and the min-max regret approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice-Hall, Englewood Cliffs (1993)

    Google Scholar 

  2. Aissi, H., Bazgan, C., Vanderpooten, D.: Min-max and min-max regret versions of combinatorial optimization problems: A survey. European Journal of Operational Research (2008) doi:10.1016/j.ejor.2008.09.012

    Google Scholar 

  3. Aissi, H., Bazgan, C., Vanderpooten, D.: Complexity of the min-max and min-max regret assignment problems. Operations Research Letters 33(6), 634–640 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Aissi, H., Bazgan, C., Vanderpooten, D.: Complexity of the min-max (regret) versions of cut problems. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 789–798. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Aron, I.D., Hentenryck, P.V.: A constraint satisfaction approach to the robust spanning tree problem with interval data. In: Darwiche, A., Friedman, N. (eds.) UAI 2002, Proceedings of the 18th Conference in Uncertainty in Artificial Intelligence, University of Alberta, Edmonton, Alberta, Canada, August 1-4, pp. 18–25. Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

  6. Aron, I.D., Hentenryck, P.V.: On the complexity of the robust spanning tree problem with interval data. Operations Research Letters 32(1), 36–40 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Averbakh, I.: Minmax regret solutions for minimax optimization problems with uncertainty. Operations Research Letters 27(2), 57–65 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Averbakh, I.: On the complexity of a class of combinatorial optimization problems with uncertainty. Mathematical Programming 90, 263–272 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Averbakh, I., Lebedev, V.: On the complexity of minmax regret linear programming. European Journal of Operational Research 160(1), 227–231 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Camerini, P.M.: The minimax spanning tree problem and some extensions. Information Processing Letters 7, 10–14 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chan, T.: Finding the shortest bottleneck edge in a parametric minimum spanning tree. In: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 232–240 (2005)

    Google Scholar 

  12. Conde, E.: An improved algorithm for selecting p items with uncertain returns according to the minmax-regret criterion. Mathematical Programming 100(2), 345–353 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dubois, D., Fargier, H., Galvagnon, V.: On latest starting times and floats in activity networks with ill-known durations. European Journal of Operational Research 147, 266–280 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dubois, D., Prade, H.: Possibility Theory: An Approach to Computerized Processing of Uncertainty. Plenum Press (1988)

    Google Scholar 

  15. Fernandez-Baca, D., Slutzki, G.: Solving parametric problems on trees. Journal of Algorithms 10 (1989)

    Google Scholar 

  16. Fortin, J., Zieliński, P., Dubois, D., Fargier, H.: Interval analysis in scheduling. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 226–240. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  17. Gabow, H.N., Tarjan, R.E.: Algorithms for two bottleneck optimization problems. Journal of Algorithms 9, 411–417 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  18. Garfinkel, R.S., Nemhauser, G.L.: Integer Programming. John Wiley & Sons, Chichester (1972)

    MATH  Google Scholar 

  19. Inuiguchi, M.: On possibilistic/fuzzy optimization. In: Melin, P., Castillo, O., Aguilar, L.T., Kacprzyk, J., Pedrycz, W. (eds.) IFSA 2007. LNCS (LNAI), vol. 4529, pp. 351–360. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  20. Inuiguchi, M., Sakawa, M.: Robust optimization under softness in a fuzzy linear programming problem. International Journal of Approximate Reasonning 18(1-2), 21–34 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kall, P., Wallace, S.W.: Stochastic Programming. Wiley, Chichester etc. (1994)

    MATH  Google Scholar 

  22. Kasperski, A.: Discrete Optimization with Interval Data. Minmax Regret and Fuzzy Approach. Studies in Fuzziness and Soft Computing, vol. 228. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  23. Kasperski, A., Zieliński, P.: An approximation algorithm for interval data minmax regret combinatorial optimization problems. Information Processing Letters 97(5), 177–180 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kasperski, A., Zieliński, P.: The robust shortest path problem in series-parallel multidigraphs with interval data. Operations Research Letters 34(1), 69–76 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kasperski, A., Zieliński, P.: On combinatorial optimization problems on matroids with uncertain weights. European Journal of Operational Research 177(2), 851–864 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kasperski, A., Zieliński, P.: On the existence of an FPTAS for minmax regret combinatorial optimization problems with interval data. Operations Research Letters 35(4), 525–532 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kasperski, A., Zieliński, P.: Using gradual numbers for solving fuzzy-valued combinatorial optimization problems. In: Melin, P., Castillo, O., Aguilar, L.T., Kacprzyk, J., Pedrycz, W. (eds.) IFSA 2007. LNCS (LNAI), vol. 4529, pp. 656–665. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  28. Kasperski, A., Zieliński, P.: Minmax regret approach and optimality evaluation in combinatorial optimization problems with interval and fuzzy weights. European Journal of Operational Research (2009) (to appear)

    Google Scholar 

  29. Kouvelis, P., Yu, G.: Robust Discrete Optimization and Its Applications. Kluwer Academic Publishers, Boston (1997)

    MATH  Google Scholar 

  30. Lawler, E.: Combinatorial Optimization: Networks and Matroids. Saunders College Publishing, Fort Worth (1976)

    MATH  Google Scholar 

  31. Luce, R.D., Raiffa, H.: Games and Decisions. Introduction and Critical Survey. Dover Publications, Inc., New York (1957)

    MATH  Google Scholar 

  32. Montemanni, R.: A benders decomposition approach for the robust spanning tree problem with interval data. European Journal of Operational Research 174(3), 1479–1490 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  33. Montemanni, R., Gambardella, L.M.: A branch and bound algorithm for the robust spanning tree problem with interval data. European Journal of Operational Research 161(3), 771–779 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  34. Montemanni, R., Gambardella, L.M., Donati, A.V.: A branch and bound algorithm for the robust shortest path problem with interval data. Operations Research Letters 32(3), 225–232 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  35. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Dover Pub. (1998)

    Google Scholar 

  36. Punnen, A.P.: A linear time algorithm for the maximum capacity path problem. European Journal of Operational Research 53, 402–404 (1991)

    Article  MATH  Google Scholar 

  37. Punnen, A.P.: A fast algorithm for a class of bottleneck problems. Computing 56, 397–401 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  38. Raghavan, S., Ball, M.O., Trichur, V.S.: Bicriteria product design optimization: An efficient solution procedure using and/or trees. Naval Research Logistics 49, 574–592 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  39. Savage, L.J.: The Foundations of Statistics. John Wiley and Sons, New York (1951)

    Google Scholar 

  40. Yaman, H., Karasan, O.E., Pinar, M.Ç.: The robust spanning tree problem with interval data. Operations Research Letters 29(1), 31–40 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  41. Young, N., Tarjan, R., Orlin, J.: Faster parametric shortest path minimum-balance algorithms. Networks 21, 205–221 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  42. Zieliński, P.: The computational complexity of the relative robust shortest path problem with interval data. European Journal of Operational Research 158(3), 570–576 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kasperski, A., Zieliński, P. (2010). Computing Min-Max Regret Solutions in Possibilistic Combinatorial Optimization Problems. In: Lodwick, W.A., Kacprzyk, J. (eds) Fuzzy Optimization. Studies in Fuzziness and Soft Computing, vol 254. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13935-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13935-2_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13934-5

  • Online ISBN: 978-3-642-13935-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics