Nothing Special   »   [go: up one dir, main page]

Skip to main content

SIA: Semantic Image Annotation Using Ontologies and Image Content Analysis

  • Conference paper
Image Analysis and Recognition (ICIAR 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6111))

Included in the following conference series:

Abstract

We introduce SIA, a framework for annotating images automatically using ontologies. An ontology is constructed holding characteristics from multiple information sources including text descriptions and low-level image features. Image annotation is implemented as a retrieval process by comparing an input (query) image with representative images of all classes. Handling uncertainty in class descriptions is a distinctive feature of SIA. Average Retrieval Rank (AVR) is applied to compute the likelihood of the input image to belong to each one of the ontology classes. Evaluation results of the method are realized using images of 30 dog breeds collected from the Web. The results demonstrated that almost 89% of the test images are correctly annotated (i.e., the method identified their class correctly).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kherfi, M., Ziou, D., Bernardi, A.: Image Retrieval from the World Wide Web: Issues, Techniques, and Systems. ACM Computing Surveys 36(1), 35–67 (2004)

    Article  Google Scholar 

  2. Hanbury, A.: A Aurvey of Methods for Image Annotation. Journal of Visual Languages and Computing 19(5), 617–627 (2008)

    Article  Google Scholar 

  3. Jeon, J., Lavrenko, V., Manmatha, R.: Automatic Image Annotation and Retrieval using Cross-Media Relevance Models. In: Proc. of ACM SIGIR 2003, Toronto, CA, pp. 119–126 (July 2003)

    Google Scholar 

  4. Schreiber, A., Dubbeldam, B., Wielemaker, J., Wielinga, B.: Ontology-Based Photo Annotation. IEEE Intelligent Systems 16(3), 66–74 (2001)

    Article  Google Scholar 

  5. Park, K.W., Jeong, J.W., Lee, D.H.: OLYBIA: Ontology-Based Automatic Image Annotation System Using Semantic Inference Rules. In: Kotagiri, R., Radha Krishna, P., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp. 485–496. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Mezaris, V., Kompatsiaris, J.: MStrintzis: Region-Based Image Retrieval using an Object Ontology and Relevance Feedback. EURASIP Journal on Applied Signal Processing 2004(1), 886–901 (2004)

    Google Scholar 

  7. Manjunath, B., Ohm, J., Vasudevan, V., Yamada, A.: Color and Texture Descriptors. IEEE Trans. on Circuits and Systems for Video Technology 11(1), 703–715 (2001)

    Article  Google Scholar 

  8. Rother, C., Kolmogorov, V., Blake, A.: GrabCut: Interactive Foreground Extraction using Iterated Graph Cuts. ACM Transactions on Graphics (TOG) 23(3), 309–314 (2004)

    Article  Google Scholar 

  9. Lux, M., Chatzichristofis, S.: LIRE: Lucene Image Retrieval: An Extensible Java CBIR Library. In: Proc. of the 16th ACM Intern. Conf. on Multimedia (MM 2008), Vancuver, CA, pp. 1085–1088 (November 2008)

    Google Scholar 

  10. Tsinaraki, C., Polydoros, P., Christodoulakis, S.: Interoperability Support between MPEG-7/21 and OWL in DS-MIRF. IEEE Transactions on Knowledge and Data Engineering 19(2), 219–232 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Koletsis, P., Petrakis, E.G.M. (2010). SIA: Semantic Image Annotation Using Ontologies and Image Content Analysis. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2010. Lecture Notes in Computer Science, vol 6111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13772-3_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13772-3_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13771-6

  • Online ISBN: 978-3-642-13772-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics