Nothing Special   »   [go: up one dir, main page]

Skip to main content

Automated Vertebra Identification from X-Ray Images

  • Conference paper
Image Analysis and Recognition (ICIAR 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6112))

Included in the following conference series:

Abstract

Automated identification of vertebra bodies from medical images is important for further image processing tasks. This paper presents a graphical model based solution for the vertebra identification from X-ray images. Compared with the existing graphical model based methods, the proposed method does not ask for a training process using training data and it also has the capability to automatically determine the number of vertebrae visible in the image. Experiments on digitially reconstructed radiographs of twenty-one cadaver spine segments verified its performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Corso, J., Alomari, R., Chaudhary, V.: Lumbar disc localization and labeling with a probabilistic model on both pixel and object features. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 202–210. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Schmidt, S., Kappes, J., Bergtholdt, M., Pekar, V., Dries, S., Bystrov, D., Schnoerr, C.: Spine detection and labeling using a parts-based graphical model. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 122–133. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Klinder, T., Ostermann, J., Ehm, M., Franz, A., Kneser, R., Lorenz, C.: Automated model-based vertebra detection, identification, and segmentation in ct images. Medical Image Analysis 13, 471–482 (2009)

    Article  Google Scholar 

  4. Murphy, K.P., Weiss, Y., Jordan, M.I.: Loopy belief propagation for approximate inference: An empirical study. In: Proceedings of Uncertainty in AI, pp. 467–475 (1999)

    Google Scholar 

  5. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 603–619 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dong, X., Zheng, G. (2010). Automated Vertebra Identification from X-Ray Images. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2010. Lecture Notes in Computer Science, vol 6112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13775-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13775-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13774-7

  • Online ISBN: 978-3-642-13775-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics