Abstract
This paper offers a computer-aided diagnosis (CAD) technique for early diagnosis of Alzheimer’s disease (AD) by means of single photon emission computed tomography (SPECT) image classification. The SPECT database for different patients is analyzed by applying the Fisher discriminant ratio (FDR) and non-negative matrix factorization (NMF) for the selection and extraction of the most significative features of each patient SPECT data, in order to reduce the large dimensionality of the input data and the problem of the curse of dimensionality, extracting score features. The NMF-transformed set of data, with reduced number of features, is classified by means of support vector machines (SVM) classification. The proposed NMF+SVM method yields up to 94% classification accuracy, thus becoming an accurate method for SPECT image classification. For the sake of completeness, comparison between conventional PCA+SVM method and the proposed method is also provided.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Álvarez, I., Górriz, J.M., Ramírez, J., Salas, D., López, M., Puntonet, C.G., Segovia, F.: Alzheimer’s diagnosis using eigenbrains and support vector machines. IET Electronic Letters 45, 165–167 (2009)
Ramírez, J., Górriz, J., Salas-Gonzalez, D., Romero, A., López, M., Álvarez, I., Gómez-Río, M.: Computer-aided diagnosis of alzheimer’s type dementia combining support vector machines and discriminant set of features. Information Sciences (2009)
López, M., Ramírez, J., Górriz, J.M., Álvarez, I., Salas-Gonzalez, D., Segovia, F., Chaves, R.: Automatic tool for the alzheimer’s disease diagnosis using pca and bayesian classification rules. IET Electronic Letters 45, 342–343 (2009)
Ramírez, J., Górriz, J.M., Gómez-Río, M., Romero, A., Lassl, A., Rodríguez, A., Puntonet, C.G., Theis, F., Lang, E.: Effective emission tomography image reconstruction algorithms for spect data. In: Bubak, M., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008, Part I. LNCS, vol. 5101, pp. 741–748. Springer, Heidelberg (2008)
Salas-González, D., Górriz, J.M., Ramírez, J., Lassl, A., Puntonet, C.G.: Improved Gauss-Newton optimization methods in affine registration of SPECT brain images. IET Electronics Letters 44, 1291–1292 (2008)
Friston, K.J., Ashburner, J., Kiebel, S.J., Nichols, T.E., Penny, W.D. (eds.): Statistical Parametric Mapping: The Analysis of Functional Brain Images. Academic Press, London (2007)
Lee, D.D., Seung, S.: Algorithms for non-negative matrix factorization. Advances in Neural Information Processing Systems 13, 556–562 (2001)
Paatero, P., Tapper, U.: Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5, 111–126 (1994)
Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neuroscience 3, 71–86 (1991)
Lang, E., Schachtner, R., Lutter, D., Herold, D., Kodewitz, A., Blöchl, F., Theis, F.J., Keck, I.R., Górriz, J.M., Vilda, P.G., Tomé, A.M.: Exploratory Matrix Factorization Techniques for Large Scale Biomedical Data Sets. In: Recent Advances in Biomedical Signal Processing, Ed. Bentham (in press)
Berry, M.W., Browne, M., Langville, A.N., Pauca, V.P., Plemmons, R.J.: Algorithms and applications for approximate nonnegative matrix factorization. Computational Statistics and Data Analysis 52, 155–173 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Padilla, P. et al. (2010). NMF-Based Analysis of SPECT Brain Images for the Diagnosis of Alzheimer’s Disease. In: Graña Romay, M., Corchado, E., Garcia Sebastian, M.T. (eds) Hybrid Artificial Intelligence Systems. HAIS 2010. Lecture Notes in Computer Science(), vol 6076. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13769-3_57
Download citation
DOI: https://doi.org/10.1007/978-3-642-13769-3_57
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13768-6
Online ISBN: 978-3-642-13769-3
eBook Packages: Computer ScienceComputer Science (R0)