Nothing Special   »   [go: up one dir, main page]

Skip to main content

NMF-Based Analysis of SPECT Brain Images for the Diagnosis of Alzheimer’s Disease

  • Conference paper
Hybrid Artificial Intelligence Systems (HAIS 2010)

Abstract

This paper offers a computer-aided diagnosis (CAD) technique for early diagnosis of Alzheimer’s disease (AD) by means of single photon emission computed tomography (SPECT) image classification. The SPECT database for different patients is analyzed by applying the Fisher discriminant ratio (FDR) and non-negative matrix factorization (NMF) for the selection and extraction of the most significative features of each patient SPECT data, in order to reduce the large dimensionality of the input data and the problem of the curse of dimensionality, extracting score features. The NMF-transformed set of data, with reduced number of features, is classified by means of support vector machines (SVM) classification. The proposed NMF+SVM method yields up to 94% classification accuracy, thus becoming an accurate method for SPECT image classification. For the sake of completeness, comparison between conventional PCA+SVM method and the proposed method is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Álvarez, I., Górriz, J.M., Ramírez, J., Salas, D., López, M., Puntonet, C.G., Segovia, F.: Alzheimer’s diagnosis using eigenbrains and support vector machines. IET Electronic Letters 45, 165–167 (2009)

    Article  Google Scholar 

  2. Ramírez, J., Górriz, J., Salas-Gonzalez, D., Romero, A., López, M., Álvarez, I., Gómez-Río, M.: Computer-aided diagnosis of alzheimer’s type dementia combining support vector machines and discriminant set of features. Information Sciences (2009)

    Google Scholar 

  3. López, M., Ramírez, J., Górriz, J.M., Álvarez, I., Salas-Gonzalez, D., Segovia, F., Chaves, R.: Automatic tool for the alzheimer’s disease diagnosis using pca and bayesian classification rules. IET Electronic Letters 45, 342–343 (2009)

    Article  Google Scholar 

  4. Ramírez, J., Górriz, J.M., Gómez-Río, M., Romero, A., Lassl, A., Rodríguez, A., Puntonet, C.G., Theis, F., Lang, E.: Effective emission tomography image reconstruction algorithms for spect data. In: Bubak, M., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008, Part I. LNCS, vol. 5101, pp. 741–748. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Salas-González, D., Górriz, J.M., Ramírez, J., Lassl, A., Puntonet, C.G.: Improved Gauss-Newton optimization methods in affine registration of SPECT brain images. IET Electronics Letters 44, 1291–1292 (2008)

    Article  Google Scholar 

  6. Friston, K.J., Ashburner, J., Kiebel, S.J., Nichols, T.E., Penny, W.D. (eds.): Statistical Parametric Mapping: The Analysis of Functional Brain Images. Academic Press, London (2007)

    Google Scholar 

  7. Lee, D.D., Seung, S.: Algorithms for non-negative matrix factorization. Advances in Neural Information Processing Systems 13, 556–562 (2001)

    Google Scholar 

  8. Paatero, P., Tapper, U.: Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5, 111–126 (1994)

    Article  Google Scholar 

  9. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neuroscience 3, 71–86 (1991)

    Article  Google Scholar 

  10. Lang, E., Schachtner, R., Lutter, D., Herold, D., Kodewitz, A., Blöchl, F., Theis, F.J., Keck, I.R., Górriz, J.M., Vilda, P.G., Tomé, A.M.: Exploratory Matrix Factorization Techniques for Large Scale Biomedical Data Sets. In: Recent Advances in Biomedical Signal Processing, Ed. Bentham (in press)

    Google Scholar 

  11. Berry, M.W., Browne, M., Langville, A.N., Pauca, V.P., Plemmons, R.J.: Algorithms and applications for approximate nonnegative matrix factorization. Computational Statistics and Data Analysis 52, 155–173 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Padilla, P. et al. (2010). NMF-Based Analysis of SPECT Brain Images for the Diagnosis of Alzheimer’s Disease. In: Graña Romay, M., Corchado, E., Garcia Sebastian, M.T. (eds) Hybrid Artificial Intelligence Systems. HAIS 2010. Lecture Notes in Computer Science(), vol 6076. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13769-3_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13769-3_57

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13768-6

  • Online ISBN: 978-3-642-13769-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics