Nothing Special   »   [go: up one dir, main page]

Skip to main content

Type-1 Non-singleton Type-2 Takagi-Sugeno-Kang Fuzzy Logic Systems Using the Hybrid Mechanism Composed by a Kalman Type Filter and Back Propagation Methods

  • Conference paper
Hybrid Artificial Intelligence Systems (HAIS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6076))

Included in the following conference series:

Abstract

This article presents a novel learning methodology based on the hybrid mechanism for training interval type-1 non-singleton type-2 Takagi-Sugeno-Kang fuzzy logic systems. As reported in the literature, the performance indexes of these hybrid models have proved to be better than the individual training mechanism when used alone. The proposed hybrid methodology was tested thru the modeling and prediction of the steel strip temperature at the descaler box entry as rolled in an industrial hot strip mill. Results show that the proposed method compensates better for uncertain measurements than previous type-2 Takagi-Sugeno-Kang hybrid learning or back propagation developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mendel, J.M.: Uncertain Rule Based Fuzzy Logic Systems: Introduction and New Directions. Prentice-Hall, Upper Saddle River (2001)

    MATH  Google Scholar 

  2. Mendez, G.M., Cavazos, A., Soto, R., Leduc, L.: Entry Temperature Prediction of a Hot Strip Mill by Hybrid Learning Type-2 FLS. Jour. of Intell. and Fuz. Sys. 17, 583–596 (2006)

    Google Scholar 

  3. Jang, J.-S.R., Sun, C.-T.: Neuro-fuzzy Modeling and Control. The Proceedings of the IEEE 3, 378–406 (1995)

    Article  Google Scholar 

  4. Mendez, G.M., Cavazos, A., Leduc, L., Soto, R.: Hot Strip Mill Temperature Prediction Using Hybrid Learning Interval Singleton Type-2 FLS. In: Proceedings of the IASTED International Conference on Modeling and Simulation, pp. 380–385 (2003)

    Google Scholar 

  5. Mendez, G.M., Cavazos, A., Leduc, L., Soto, R.: Modeling of a Hot Strip Mill Temperature Using Hybrid Learning for Interval Type-1 and Type-2 Non-singleton Type-2 FLS. In: Proceedings of the IASTED International Conference on Artificial Intelligence and Applications, pp. 529–533 (2003)

    Google Scholar 

  6. Mendez, G.M., Juarez, I.L.: Orthogonal-back Propagation Hybrid Learning Algorithm for Interval Type-1 Non-singleton Type-2 Fuzzy Logic Systems. WSEAS Trans. on Sys. 3-4, 212–218 (2005)

    Google Scholar 

  7. Mendez, G.M., De los Angeles Hernandez, M.: Hybrid Learning for Interval Type-2 Fuzzy Systems Based on Orthogonal Least-squares and Back-propagation Methods. Inf. Scien. 179, 2157–3146 (2009)

    Google Scholar 

  8. Mendez, G.M., Castillo, O.: Interval Type-2 TSK Fuzzy Logic Systems Using Hybrid Learning Algorithm. In: The IEEE international Conference on Fuzzy Systems, pp. 230–235 (2005)

    Google Scholar 

  9. Mendez, G.M., Juarez, I.L.: First-order Interval Type-2 TSK Fuzzy Logic Systems Using a Hybrid Learning Algorithm. WSEAS Trans. on Comp. 4, 378–384 (2005)

    Google Scholar 

  10. Mendez, G.M.: Interval Type-1 Non-singleton Type-2 TSK Fuzzy Logic Systems Using the Hybrid Training Method RLS-BP. In: Analysis and Design of Intelligent Systems Using Soft Computing Techniques, pp. 36–44. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Mendez, G.M., de los Angeles Hernandez, M.: Interval Type-2 ANFIS. In: Innovations in Hybrid Intelligent Systems, pp. 64–71. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Lee, D.Y., Cho, H.S.: Neural Network Approach to the Control of the Plate Width in Hot Plate Mills. International Joint Conference on Neural Networks 5, 3391–3396 (1999)

    Article  MathSciNet  Google Scholar 

  13. Taylor, B.N., Kuyatt, B.: Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results, NIST Technical Note 1297 (1994)

    Google Scholar 

  14. Wang, L.-X.: Fuzzy Systems are Universal Approximators. In: Proceedings of the IEEE Conf. on Fuzzy Systems, pp. 1163–1170 (1992)

    Google Scholar 

  15. Wang, L.-X., Mendel, J.M.: Back-propagation Fuzzy Systems as Nonlinear Dynamic System Identifiers. In: Proceedings of the IEEE Conf. on Fuzzy Systems, pp. 1409–1418 (1992)

    Google Scholar 

  16. Wang, L.-X.: Fuzzy Systems are Universal Approximators. In: Proceedings of the IEEE Conf. on Fuzzy Systems, San Diego, pp. 1163–1170 (1992)

    Google Scholar 

  17. Wang, L.-X.: A Course in Fuzzy Systems and Control. Prentice Hall PTR, Upper Saddle River (1997)

    MATH  Google Scholar 

  18. Liang, Q.J., Mendel, J.M.: Interval Type-2 Fuzzy Logic Systems: Theory and Design. Trans. Fuzzy Systems 8, 535–550 (2000)

    Article  Google Scholar 

  19. Jang, J.-S.R., Sun, C.-T., Mizutani, E.: Neuro-fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. Prentice-Hall, Upper Saddle River (1997)

    Google Scholar 

  20. GE Models, Users reference 1, Roanoke VA (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mendez, G.M., Hernández, A., Cavazos, A., Mata-Jiménez, MT. (2010). Type-1 Non-singleton Type-2 Takagi-Sugeno-Kang Fuzzy Logic Systems Using the Hybrid Mechanism Composed by a Kalman Type Filter and Back Propagation Methods. In: Graña Romay, M., Corchado, E., Garcia Sebastian, M.T. (eds) Hybrid Artificial Intelligence Systems. HAIS 2010. Lecture Notes in Computer Science(), vol 6076. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13769-3_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13769-3_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13768-6

  • Online ISBN: 978-3-642-13769-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics