Abstract
Measurement of activation rates in cardiac electrograms is commonly done though estimating the frequency of the sinusoid with the greatest power. This frequency, commonly referred to as Dominant Frequency, is generally estimated using the short-time Fourier Transform with a window of fixed size. In this work a new short-time Fourier transform method with a data-adaptive window is introduced. Experiments are conducted with both synthetic and real data. Results for the former case are compared with current state-of-the-art methods. Given the difficulty in identifying activation points in electrograms, experiments reported in the literature have so far used only synthetic data. The new method is tested by application to real data, with true activation rates determined manually. Substantial improvement is observed. An error analysis is provided.
Chapter PDF
Similar content being viewed by others
References
Addison, P.S., Watson, J.N., Clegg, G.R., Steen, P., Robertson, C.E.: Finding coordinated atrial activity during ventricular fibrillation using wavelet decomposition. IEEE Engineering in Medicine and Biology 58–65 (January/February 2002)
Barbaro, V., Bartolini, P., Calcagnini, G., Censi, F., Michelucci, A., Morelli, S.: Mapping the Organization of human atrial fibrillation using a basket catheter. Computers in Cardiology, 475–478 (1999)
Ellis, W.S., Eisenberg, S.J., Auslander, D.M., DAe, M.W., Zakhor, A., Lesh, M.D.: Deconvolution: A novel signal processing approach for determining activation time from fractionated electrograms and detecting infarcted tissue. Circulation 94, 2633–2640 (1996)
Elvan, A., et al.: Dominant Frequency of Atrial Fibrillation Correlates Poorly with Atrial Fibrillation Cycle Length. Circulation, Arrhythmia and Electrophysiology 2, 634–644 (2009)
Everett, T.H., Kok, L.-C., Vaughn, R.H., Moorman, J.R., Haines, D.E.: Frequency domain algorithm for quantifying atrial fibrillation organization to increase defibrillation efficacy. IEEE Transactions on Biomedical Engineering 48(9), 69–978 (2001)
Fischer, G., Stühlinger, M.C., Wieser, B., Nowak, C.-N., Wieser, L., Tilg, B., Hintringer, F.: On Computing Dominant Frequency From Bipolar Intracardiac Electrograms. IEEE Transactions on Biomedical Engineering 54(1), 165–169 (2007)
Le Goazigo, C.: Measurement of the dominant frequency in atrial fibrillation electrograms. MSc. Thesis, Cranfield University (2005)
Houben, R.P.M., Allessie, M.A.: Processing of intracardiac electrograms in atrial fibrillation. IEEE Engineering in Medicine and Biology Magazine, 40–51 (November/December 2006)
Jacquemet, V., Oosterom, A.V., Vesin, J.V., Kappenberger, L.: Analysis of electrocardiograms during atrial fibrillation. IEEE Engineering in Medicine and Biology Magazine, 79–88 (November-December 2006)
Langley, P., Bourke, J.P., Murray, A.: Frequency analysis of atrial fibrillation. Computers in Cardiology, 65–68 (September 2000)
Moghe, S.A., Qu, F., Leonelli, F.M., Patwardhan, A.R.: Time-frequency representation of epicardial electrograms during atrial fibrillation. Biomedical Sciences Instrumentation 36, 45–50 (2000)
Ng, J., Kadish, A.H., Goldberger, J.J.: Effect of electrogram characteristics on the relationship of dominant frequency to atrial activation rate in atrial fibrillation. Heart Rhythm 3(11), 1295–1305 (2006)
Ng, J., Goldberger, J.J.: Understanding and interpreting dominant frequency analysis of AF electrograms. Journal of Cardiovascular Electrophysiology 18(7), 680–685 (2007)
Ng, J., Kadish, A.H., Goldberger, J.J.: Technical considerations for dominant frequency analysis. Journal of Cardiovascular Electrophysiology 18(7), 757–764 (2007)
Sandberg, F., Stridth, M., Sörnmo, L.: Frequency tracking of atrial fibrillation using hidden Markov models. IEEE Transactions on Biomedical Engineering 55(2), 502–511 (2008)
Sanders, P., Berenfeld, O., Hocini, M., Jaïs, P., Vaidyanathan, R., Hsu, L.-F., Garrigue, S., Takahashi, Y., Rotter, M., Sacher, F., Scavëe, C., Ploutz-Snyder, R., Jalife, J., Haïssaguerre, M.: Spectral analysis identifies sites of high frequency activity maintaining atrial fibrillation in humans. Circulation 112, 789–797 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mirchandani, G., Sharma, S. (2010). Determining Dominant Frequency with Data-Adaptive Windows. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D., Meunier, J. (eds) Image and Signal Processing. ICISP 2010. Lecture Notes in Computer Science, vol 6134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13681-8_34
Download citation
DOI: https://doi.org/10.1007/978-3-642-13681-8_34
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13680-1
Online ISBN: 978-3-642-13681-8
eBook Packages: Computer ScienceComputer Science (R0)