Nothing Special   »   [go: up one dir, main page]

Skip to main content

Ontology-Based Mining of Brainwaves: A Sequence Similarity Technique for Mapping Alternative Features in Event-Related Potentials (ERP) Data

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6119))

Included in the following conference series:

Abstract

In this paper, we present a method for identifying correspondences, or mappings, between alternative features of brainwave activity in event-related potentials (ERP) data. The goal is to simulate mapping across results from heterogeneous methods that might be used in different neuroscience research labs. The input to the mapping consists of two ERP datasets whose spatiotemporal characteristics are captured by alternative sets of features, that is, summary spatial and temporal measures capturing distinct neural patterns that are linked to concepts in a set of ERP ontologies, called NEMO (Neural ElectroMagnetic Ontologies) [3, 6]. The feature value vector of each summary metric is transformed into a point-sequence curve, and clustering is performed to extract similar subsequences (clusters) representing the neural patterns that can then be aligned across datasets. Finally, the similarity between measures is derived by calculating the similarity between corresponding point-sequence curves. Experiment results showed that the proposed approach is robust and has achieved significant improvement on precision than previous algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Faloutsos, C., Swami, A.N.: Efficient similarity search in sequence databases. In: Lomet, D.B. (ed.) FODO 1993. LNCS, vol. 730, pp. 69–84. Springer, Heidelberg (1993)

    Google Scholar 

  2. Brinkhoff, T., Kriegel, H.-P., Seeger, B.: Efficient processing of spatial joins using r-trees. In: SIGMOD ’93: Proceedings of the 1993 ACM SIGMOD international conference on Management of data, pp. 237–246. ACM, New York (1993)

    Chapter  Google Scholar 

  3. Dou, D., Frishkoff, G., Rong, J., Frank, R., Malony, A., Tucker, D.: Development of NeuroElectroMagnetic Ontologies (NEMO): A Framework for Mining Brain Wave Ontologies. In: Proceedings of the 13th ACM International Conference on Knowledge Discovery and Data Mining (KDD 2007), pp. 270–279 (2007)

    Google Scholar 

  4. Faloutsos, C., Seeger, B., Traina, A., Traina Jr., C.: Spatial join selectivity using power laws. In: SIGMOD ’00: Proceedings of the 2000 ACM SIGMOD international conference on Management of data, pp. 177–188. ACM, New York (2000)

    Chapter  Google Scholar 

  5. Frishkoff, G.A., Frank, R.M., Rong, J., Dou, D., Dien, J., Halderman, L.K.: A Framework to Support Automated Classification and Labeling of Brain Electromagnetic Patterns. Computational Intelligence and Neuroscience (CIN), Special Issue, EEG/MEG Analysis and Signal Processing 2007 13 (2007)

    Google Scholar 

  6. Frishkoff, G., Le Pendu, P., Frank, R., Liuand, H., Dou, D.: Development of Neural Electromagnetic Ontologies (NEMO): Ontology-based Tools for Representation and Integration of Event-related Brain Potentials. In: Proceedings of the International Conference on Biomedical Ontology, ICBO 2009 (2009)

    Google Scholar 

  7. Keogh, E., Kasetty, S.: On the need for time series data mining benchmarks: A survey and empirical demonstration. Data Min. Knowl. Discov. 7(4), 349–371 (2003)

    Article  MathSciNet  Google Scholar 

  8. Wache, H., Vogele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H., Hubner, S.: Ontology-based integration of information: A survey of existing approaches. In: IJCAI-01 Workshop: Ontologies and Information Sharing, pp. 108–117 (2001)

    Google Scholar 

  9. Dhamankar, R., Lee, Y., Doan, A., Halevy, A.Y., Domingos, P.: iMAP: Discovering Complex Mappings between Database Schemas. In: Proceedings of the ACM Conference on Management of Data, pp. 383–394 (2004)

    Google Scholar 

  10. Larson, J., Navathe, S., Elmasri, R.: A theory of attributed equivalence in databases with application to schema integration. IEEE Transactions on Software Engineering 15(4), 449–463 (1989)

    Article  MATH  Google Scholar 

  11. Sheth, A., Larson, J., Cornelio, A., Navathe, S.: A tool for integrating conceptual schemas and user views. In: Proc. 4th International Conference on Data Engineering (ICDE), Los Angeles, CA, US, pp. 176–183 (1988)

    Google Scholar 

  12. Gratton, G., Coles, M.G.H., Donchin, E.: A procedure for using multi-electrode information in the analysis of components of the event-related potential: Vector filter. Psychophysiology 26(2), 222–232 (1989)

    Article  Google Scholar 

  13. Spencer, K.M., Dien, J., Donchin, E.: A componential analysis of the ERP elicited by novel events using a dense electrode array. Psychophysiology 36, 409–414 (1999)

    Article  Google Scholar 

  14. Donchin, E., Heffley, E.: Multivariate analysis of event-related potential data: a tutorial review. In: Otto, D. (ed.) Multidisciplinary Perspectives in Event-Related Brain Potential Research, pp. 555–572. U.S. Government Printing Office, Washington (1978)

    Google Scholar 

  15. Picton, T.W., Bentin, S., Berg, P., et al.: Guidelines for using human event-related potentials to study cognition: recording standards and publication criteria. Psychophysiology 37(2), 127–152 (2000)

    Article  Google Scholar 

  16. Li, W., Clifton, C.: Semantic integration in heterogeneous databases using neural networks. In: Proc. 20th Intl. Conf. on Very Large Data Bases, pp. 1–12 (1994)

    Google Scholar 

  17. Li, W., Clifton, C.: SemInt: a tool for identifying attribute correspondences in heterogeneous databases using neural network. Data Knowl. Eng. 33(1), 49–84 (2000)

    Article  MATH  Google Scholar 

  18. Rahm, E., Bernstein, P.: A survey of approaches to automatic schema matching. The VLDB Journal 10(4), 334–350 (2001)

    Article  MATH  Google Scholar 

  19. Doan, A.H., Domingos, P., Halevy, A.: Reconciling schemas of disparate data sources: a machine-learning approach. In: Proc ACM SIGMOD Conf., pp. 509–520 (2001)

    Google Scholar 

  20. LePendu, P., Dou, D., Frishkoff, G., Rong, J.: Ontology Database: A New Method for Semantic Modeling and an Application to Brainwave Data. In: Ludäscher, B., Mamoulis, N. (eds.) SSDBM 2008. LNCS, vol. 5069, pp. 313–330. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, H., Frishkoff, G., Frank, R., Dou, D. (2010). Ontology-Based Mining of Brainwaves: A Sequence Similarity Technique for Mapping Alternative Features in Event-Related Potentials (ERP) Data. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2010. Lecture Notes in Computer Science(), vol 6119. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13672-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13672-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13671-9

  • Online ISBN: 978-3-642-13672-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics