Abstract
It is important to identify the “correct” number of topics in mechanisms like Latent Dirichlet Allocation(LDA) as they determine the quality of features that are presented as features for classifiers like SVM. In this work we propose a measure to identify the correct number of topics and offer empirical evidence in its favor in terms of classification accuracy and the number of topics that are naturally present in the corpus. We show the merit of the measure by applying it on real-world as well as synthetic data sets(both text and images). In proposing this measure, we view LDA as a matrix factorization mechanism, wherein a given corpus C is split into two matrix factors M 1 and M 2 as given by C d*w = M1 d*t x Q t*w . Where d is the number of documents present in the corpus and w is the size of the vocabulary. The quality of the split depends on “t”, the right number of topics chosen. The measure is computed in terms of symmetric KL-Divergence of salient distributions that are derived from these matrix factors. We observe that the divergence values are higher for non-optimal number of topics – this is shown by a ’dip’ at the right value for ’t’.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.: Indexing by Latent Semantic Analysis. JASIS 41(6), 391–407 (1990)
Hofmann, T.: Probabilistic Latent Semantic Indexing. In: SIGIR 1999, pp. 50–57 (1999)
Blei, D.M., Ng, A.Y., Jordan, M.I.: Jordan: Latent Dirichlet Allocation. Journal of Machine Learning Research 3, 993–1022 (2003)
Lee, D.D., Sebastian Seung, H.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788–791 (1999)
Cao, J., Xia, T., Li, J., Zhang, Y., Tang, S.: A density-based method for adaptive LDA model selection. Neurocomputing 72(7-9), 1775–1781 (2009)
Aggarwal, C.C., Hinneburg, A., Keim, D.A.: On the Surprising Behavior of Distance Metrics in High Dimensional Spaces. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973, pp. 420–434. Springer, Heidelberg (2000)
Gaussier, E., Goutte, C.: Relation between PLSA and NMF and Implications. In: Proc. 28th international ACM SIGIR conference on Research and development in information retrieval (SIGIR 2005), pp. 601–602 (2005)
Eckart, C., Young, G.: The approximation of one matrix by another of lower rank. Psychometrika 1(3), 211–218 (1936)
Kullback, S., Leibler, R.A.: On Information and Sufficiency. Annals of Mathematical Statistics 22(1), 79–86 (1951)
Zavitsanos, E., Petridis, S., Paliouras, G., Vouros, G.A.: Determining Automatically the Size of Learned Ontologies. In: ECAI 2008, pp. 775–776 (2008)
Teh, Y.W., Jordan, M.I., Beal, M.J., Blei, D.M.: Sharing Clusters among Related Groups: Hierarchical Dirichlet Processes. In: NIPS 2004 (2004)
Blei, D.M., Lafferty, J.D.: Correlated Topic Models. In: NIPS 2005 (2005)
Smyth, P., Welling, M.: Asynchronous Distributed Learning of Topic Models. In: NIPS 2008, pp. 81–88 (2008) (bibliographical record in XML Arthur Asuncion)
Li, W., McCallum, A.: Pachinko allocation: DAG-structured mixture models of topic correlations. In: ICML 2006, pp. 577–584 (2007)
http://archive.ics.uci.edu/ml/datasets/Bag+of+Words , http://www.cs.princeton.edu/~blei/lda-c/
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Arun, R., Suresh, V., Veni Madhavan, C.E., Narasimha Murthy, M.N. (2010). On Finding the Natural Number of Topics with Latent Dirichlet Allocation: Some Observations. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2010. Lecture Notes in Computer Science(), vol 6118. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13657-3_43
Download citation
DOI: https://doi.org/10.1007/978-3-642-13657-3_43
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13656-6
Online ISBN: 978-3-642-13657-3
eBook Packages: Computer ScienceComputer Science (R0)