Nothing Special   »   [go: up one dir, main page]

Skip to main content

Software Defect Prediction Using Fuzzy Support Vector Regression

  • Conference paper
Advances in Neural Networks - ISNN 2010 (ISNN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6064))

Included in the following conference series:

  • 1863 Accesses

Abstract

Regression techniques have been applied to improve software quality by using software metrics to predict defect numbers in software modules. This can help developers allocate limited developing resources to modules containing more defects. In this paper, we propose a novel method of using Fuzzy Support Vector Regression (FSVR) in predicting software defect numbers. Fuzzification input of regressor can handle unbalanced software metrics dataset. Compared with the approach of support vector regression, the experiment results with the MIS and RSDIMU datasets indicate that FSVR can get lower mean squared error and higher accuracy of total number of defects for modules containing large number of defects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fenton, N.E., Neil, M.: A critique of software defect prediction models. IEEE Transactions on Software Engineering 25(5), 675–689 (1999)

    Article  Google Scholar 

  2. Wang, Q., Wu, S., Li, M.: Software defect prediction technologies. Journal of Software 19(7), 1560–1580 (2007) (in Chinese)

    Google Scholar 

  3. Halstead, M.H.: Elements of Software Science. Elsevier, North-Holland (1975)

    Google Scholar 

  4. McCabe, T.J.: A complexity measures. IEEE Transations on Software Engineering 2(4), 308–320 (1976)

    Article  MathSciNet  Google Scholar 

  5. Akiyama, F.: An example of software system debugging. Information Processing 71, 353–379 (1971)

    Google Scholar 

  6. Drucker, H., Burges, C., Kaufman, L., Smola, A., Vapnik, V.: Support vector regression machines. In: Advances in Neural Information Processing Systems (NIPS), December 1996, vol. 9, pp. 155–161. MIT Press, Cambridge (1996)

    Google Scholar 

  7. Hong, D.H., Hwang, C.: Support vector fuzzy regression machines. Fuzzy Sets and Systems 138(2), 271–281 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Lin, C.F., Wang, S.D.: Fuzzy support vector machine. IEEE Transactions on Neural Networks 13(2), 464–471 (2002)

    Article  Google Scholar 

  9. Sun, Z., Sun, Y.: Fuzzy support vector machine for regression estimation. In: Proc. of IEEE International Conference on Systems, Man and Cybernetics., vol. 4, pp. 3336–3341 (2003)

    Google Scholar 

  10. Bao, Y.K., Liu, Z.T., Guo, L., Wang, W.: Forecasting stock composite index by fuzzy support vector machines regression. In: Proc. of International Conference on Machine Learning and Cybernetics, August 2005, vol. 6, pp. 3535–3540 (2005)

    Google Scholar 

  11. Xing, F., Guo, P.: Support vector regression for software reliability growth modeling and prediction. In: Wang, J., Liao, X., Yi, Z. (eds.) ISNN 2005. LNCS, vol. 3496, pp. 925–930. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Xing, F., Guo, P., Lyu, M.R.: A novel method for early software quality prediction based on support vector machine. In: Proc. of the 16th IEEE International Symposium on Software Reliability Engineering (ISSRE 2005), November 2005, pp. 213–222 (2005)

    Google Scholar 

  13. Jin, X., Liu, Z., Bie, R., Zhao, G., Ma, J.: Support vector machines for regression and applications to software quality prediction. In: Alexandrov, V. (ed.) ICCS 2006. LNCS, vol. 3994, pp. 781–788. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Ostrand, T.J., Weyuker, E.J., Bell, R.M.: Automating algorithms for the identification of fault-prone files. In: Proc. of International Symposium on Software Testing and Analysis, July 2007, pp. 219–227 (2007)

    Google Scholar 

  15. Ostrand, T., Weyuke, E., Bell, R.: Predicting the location and number of faults in large software systems. IEEE Transactions on Software Engineering 31(4), 340–355 (2005)

    Article  Google Scholar 

  16. Bibi, S., Tsoumakas, G., Stamelos, I., Vlahavas, I.: Regression via classification applied on software defect estimation. Expert Systems with Applications 34, 2091–2101 (2008)

    Article  Google Scholar 

  17. Zimmermann, T., Premraj, R., Zeller, A.: Predicting defects for Eclipse. In: Proc. of the 3rd International Workshop on Predicator Models in Software Engineering (May 2007)

    Google Scholar 

  18. Lyu, M.R. (ed.): Handbook of Software Reliability Engineering. IEEE Computer Society Press and McGraw-Hill Book Company (1996)

    Google Scholar 

  19. Lyu, M.R., Huang, Z., Sze, K.S., Cai, X.: An empirical study on testing and fault tolerance for software reliability engineering. In: Proc. of the 14th IEEE International Symposium on Software Reliability Engineering (ISSRE 2003), November 2003, pp. 119–130 (2003)

    Google Scholar 

  20. Yang, B., Chen, X., Xu, S., Guo, P.: Software metrics analysis with genetic algorithm and affinity propagation clustering. In: Proc. of the 2008 International Conference on Data Mining (DMIN 2008), July 2008, vol. II, pp. 590–596 (2008)

    Google Scholar 

  21. Engelbrecht, A.P.: Computational Intelligence: An Introduction, 2nd edn. Wiley, New Jersey (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yan, Z., Chen, X., Guo, P. (2010). Software Defect Prediction Using Fuzzy Support Vector Regression. In: Zhang, L., Lu, BL., Kwok, J. (eds) Advances in Neural Networks - ISNN 2010. ISNN 2010. Lecture Notes in Computer Science, vol 6064. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13318-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13318-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13317-6

  • Online ISBN: 978-3-642-13318-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics