Nothing Special   »   [go: up one dir, main page]

Skip to main content

Gradient-based Local Descriptor and Centroid Neural Network for Face Recognition

  • Conference paper
Advances in Neural Networks - ISNN 2010 (ISNN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6064))

Included in the following conference series:

  • 1791 Accesses

Abstract

This paper presents a feature extraction method from facial images and applies it to a face recognition problem. The proposed feature extraction method, called gradient-based local descriptor (GLD), first calculates the gradient information of each pixel and then forms an orientation histogram at a predetermined window for the feature vector of a facial image. The extracted features are combined with a centroid neural network with the Chi square distance measure (CNN-χ 2) for a face recognition problem. The proposed face recognition method is evaluated using the Yale face database. The results obtained in experiments imply that the CNN-χ 2 algorithm accompanied with the GLD outperforms recent state-of-art algorithms including the well-known approaches KFD (Kernel Fisher Discriminant based on eigenfaces), RDA (Regularized Discriminant Analysis), and Sobel faces combined with 2DPCA (two dimensional Principle Component Analysis) in terms of recognition accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chellappa, R., Wilson, C.L., Sirohey, S.: Human and machine recognition of faces: A survey. Proceedings of IEEE 83(5), 705–740 (1995)

    Article  Google Scholar 

  2. Kirby, M., Sirovich, L.: Application of the karhunen-loeve procedure for the characteristic of human faces. IEEE Trans. on Pattern Analysis and Machine Intelligence 12(1), 103–108 (1990)

    Article  Google Scholar 

  3. Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neuroscience 3, 71–86 (1991)

    Article  Google Scholar 

  4. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19, 711–712 (1997)

    Article  Google Scholar 

  5. Wiskott, L., Fellous, J.-M., Kuiger, N., von der Malsburg, C.: Face Recognition by Elastic Bunch Graph Matching. IEEE Trans. Pattern Analysis and Machine Intelligence 19, 775–779 (1997)

    Article  Google Scholar 

  6. Bartlett, M.S., Movellan, J.R., Sejnowski, T.J.: Face Recognition by Independent Component Analysis. IEEE Trans. on Neural Networks 13(6), 1450–1464 (2002)

    Article  Google Scholar 

  7. Yang, J., Jin, Z., Yang, J.Y., Zhang, D., Frangi, A.F.: Essence of kernel fisher discriminant: KPCA plus IDA. Pattern Recognition 10, 2097–2100 (2004)

    Article  Google Scholar 

  8. Jian, Y., Zhang, D., Frangi, A., Jing-yu, Y.: Twodimensional pca: a new approach to appearance-based face representation and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 26(1), 131–137 (2004)

    Article  Google Scholar 

  9. Ruiz-del Solar, J., Navarrete, P.: Eigenspace-based face recognition: a comparative study of different approaches. IEEE Trans. on Systems, Man, and Cybernetics 35(3), 315–325 (2005)

    Article  Google Scholar 

  10. Dai, D.Q., Yuen, P.: Face recognition by regularized discriminant analysis. IEEE Trans. on Systems, Man, and Cybernetics 37(4), 1080–1085 (2007)

    Article  Google Scholar 

  11. Lu, Y.-M., Liao, B.-Y., Pan, J.-S.: Face recognition by regularized discriminant analysis. In: Proc. of Int. Conf. on Intelligent Information Hiding and Multimedia Signal Processing, pp. 378–381 (2008)

    Google Scholar 

  12. Lowe, D.G.: Distinctive image features from Scale-Invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  13. Nagasaka, A., Tanaka, Y.: Automatic video indexing and full-video search for object appearances. In: Proc. IFIP 2nd Working Conf. Visual Database systems, pp. 502–505 (1992)

    Google Scholar 

  14. Albiol, A., Monzo, D., Martin, A., Sastre, J., Albiol, A.: Face recognition using HOG-EBGM. Pattern Recognition Letters 29(10), 1537–1543 (2008)

    Article  Google Scholar 

  15. Park, D.C.: Centroid neural network for unsupervised competitive learning. IEEE Trans. on Neural Networks 11, 520–528 (2000)

    Article  Google Scholar 

  16. Park, D.C., Woo, Y.: Weighted centroid neural network for edge reserving image compression. IEEE Trans. on Neural Networks 12, 1134–1146 (2001)

    Article  Google Scholar 

  17. Vu Thi, L., Park, D.-C., Woo, D., Lee, Y.: Centroid neural network with chi square distance measure for texture classification. In: Proc. of IJCNN (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Huyen, N.T.B., Park, DC., Woo, DM. (2010). Gradient-based Local Descriptor and Centroid Neural Network for Face Recognition. In: Zhang, L., Lu, BL., Kwok, J. (eds) Advances in Neural Networks - ISNN 2010. ISNN 2010. Lecture Notes in Computer Science, vol 6064. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13318-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13318-3_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13317-6

  • Online ISBN: 978-3-642-13318-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics