Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Approach to Texture Segmentation Analysis Based on Sparse Coding Model and EM Algorithm

  • Conference paper
Advances in Neural Networks - ISNN 2010 (ISNN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6064))

Included in the following conference series:

  • 1779 Accesses

Abstract

Sparse coding theory is a method for finding a reduced representation of multidimensional data. When applied to images, this theory can adopt efficient codes for images that captures the statistically significant structure intrinsic in the images. In this paper, we mainly discuss about its application in the area of texture images analysis by means of Independent Component Analysis. Texture model construction, feature extraction and further segmentation approaches are proposed respectively. The experimental results demonstrate that the segmentation based on sparse coding theory gets promising performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Reed, T.R., Hans du Buf, J.M.: A review of recent texture segmentation and feature extraction techniques. CVGIP: Image Understanding 57(3), 359–372 (1993)

    Article  Google Scholar 

  2. Tuceryan, M., Jain, A.K.: Texture Analysis. In: Chen, C.H., Pau, L.F., Wang, P.S.P. (eds.) The Handbook of Pattern Recognition and Computer Vision, 2nd edn., pp. 207–248. World Scientific Publishing Company, Singapore (1998)

    Google Scholar 

  3. Van Hateren, J.K., Van der Schaaf, A.: Independent component filters of natural images compared with simple cells in primary visual cortex. Proceedings of the Royal Society of London, B225 265, 359–366 (1998)

    Article  Google Scholar 

  4. Simoncelli, E.P.: Vision and the statistics of the visual environment. Current opinion in Neurobiology 13(2), 144–149 (2003)

    Article  Google Scholar 

  5. Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996)

    Article  Google Scholar 

  6. Hyvarinen, A., Oja, E.: Independent component analysis: Algorithms and applications. Neural Networks 13(4-5), 411–430 (2000)

    Article  Google Scholar 

  7. Hyvarinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. In: Haykin, S. (series ed.) Communications, and Control. Wiley Series on Adaptive and Learning Systems for Signal Processing, pp. 165–237. John Wiley and Sons, Inc., Chichester (2001)

    Google Scholar 

  8. Peyre, G.: Non-negative sparse modeling of textures. In: Sgallari, F., Murli, A., Paragios, N. (eds.) SSVM 2007. LNCS, vol. 4485, pp. 628–639. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Hyvarinen, A.: Fast and Robust Fixed-Point Algorithms for Independent Component Analysis. IEEE Transactions on Neural Network 10(3), 626–634 (1999)

    Article  Google Scholar 

  10. Demster, A.P., Laird, N.M., Rubin, D.B.: Maximum-likelihood from incomplete data via the EM algorithm. J. Royal Statist. Soc. Ser. B. 39, 1–38 (1977)

    Google Scholar 

  11. Jain, A.K., Farrokhnia, F.: Unsupervised texture segmentation using Gabor filters. Pattern Recognition 24(12), 1167–1186 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Duan, L., Ma, J., Yang, Z., Miao, J. (2010). An Approach to Texture Segmentation Analysis Based on Sparse Coding Model and EM Algorithm. In: Zhang, L., Lu, BL., Kwok, J. (eds) Advances in Neural Networks - ISNN 2010. ISNN 2010. Lecture Notes in Computer Science, vol 6064. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13318-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13318-3_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13317-6

  • Online ISBN: 978-3-642-13318-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics