Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Large-Update Primal-Dual Interior-Point Method for Second-Order Cone Programming

  • Conference paper
Advances in Neural Networks - ISNN 2010 (ISNN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6063))

Included in the following conference series:

  • 1861 Accesses

Abstract

A large-update primal-dual interior-point algorithm is presented for solving second order cone programming. At each iteration, the iterate is always following the usual wide neighborhood \(\mathcal {N}_\infty^-(\tau)\), but not necessary staying within it. However, it must stay within a wider neighborhood \(\mathcal {N}(\tau,\beta)\). We show that the method has \(O(\sqrt{r}L)\) iteration complexity bound which is the best bound of wide neighborhood algorithm for second-order cone programming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Rangarajan, B.K.: Polynomial Convergence of Infeasible-Interior-Point Methods over Symmetric Cones. SIAM J. OPTIM. 16(4), 1211–1229 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alizadeh, F., Goldfarb, D.: Second-order cone programming. Math. Program. 95, 3–51 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Peng, J.M., Roos, C., Terlaky, T.: Self-regular functions and new search directions for linear and semidefinite optimization. Math. Program. Ser. A 93, 129–171 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Toh, K.C., Tütüncü, R.H., Todd, M.J.: SDPT3 Version 3.02-A MATLAB software for semidefinite-quadratic-linear programming (2002)

    Google Scholar 

  5. Todd, M.J., Toh, K.C., Tütüncü, R.H.: On the Nesterov-Todd direction in semidefinite programming. SIAM Journal on Optimization 8, 769–796 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Shivaswamy, P.K., Bhattacharyya, C., Smola, A.J.: Second Order Cone Programming Approaches for Handling Missing and Uncertain Data. Journal of Machine Learning Research 7, 1283–1314 (2006)

    MathSciNet  Google Scholar 

  7. Monteiro, R.D.C., Zhang, Y.: A unified analysis for a class of long-step primal-dual path-following interior-point algorithms for semidefinie programming. Math. Program. 81, 281–299 (1998)

    MathSciNet  Google Scholar 

  8. Debnath, R., Muramatsu, M., Takahashi, H.: An Efficient Support Vector Machine Learning Method with Second-Order Cone Programming for Large-Scale Problems. Applied Intelligence 23, 219–239 (2005)

    Article  MATH  Google Scholar 

  9. Nesterov, Y.E., Todd, M.J.: Primal-dual Interior-point Methods for Self-scaled Cones. SIAM J. OPTIM. 8(2), 324–364 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fang, L., He, G., Feng, Z., Wang, Y. (2010). A Large-Update Primal-Dual Interior-Point Method for Second-Order Cone Programming. In: Zhang, L., Lu, BL., Kwok, J. (eds) Advances in Neural Networks - ISNN 2010. ISNN 2010. Lecture Notes in Computer Science, vol 6063. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13278-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13278-0_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13277-3

  • Online ISBN: 978-3-642-13278-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics