Nothing Special   »   [go: up one dir, main page]

Skip to main content

The Influence of Censoring for the Performance of Survival Tree Ensemble

  • Conference paper
Artifical Intelligence and Soft Computing (ICAISC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6114))

Included in the following conference series:

Abstract

One of the main objectives in survival analysis is prediction the time of failure occurrence. It is done on a base of learning sets, which contain incomplete (censored) information on patients failure times. Proposed predictors should allow to cope with censored data. In the paper the influence of censoring for the performance of dipolar tree ensemble was investigated. The prediction ability of the model was verified by several measures, such as direct and indirect estimators of absolute predictive errors: \(\tilde{D}_{S,x}\), \(\hat{D}_x\) and explained variation. The analysis is conducted on the base of artificial data, generated with different values of censoring rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andersen, P.K., Borgan, O., Gill, R.D.: Statistical Models based on Counting Processes. Springer, New York (1993)

    MATH  Google Scholar 

  2. Bobrowski, L., Krȩtowska, M., Krȩtowski, M.: Design of neural classifying networks by using dipolar criterions. In: Proc. of the Third Conference on Neural Networks and Their Applications, Kule, Poland, pp. 689–694 (1997)

    Google Scholar 

  3. Cox, D.R.: Regression models and life tables (with discussion). Journal of the Royal Statistical Society B 34, 187–220 (1972)

    MATH  Google Scholar 

  4. De Laurentiis, M., Ravdin, P.M.: Survival analysis of censored data: neural network analysis detection of complex interactions between variables. Breast Cancer Research and Treatment 32(1), 113–118 (1994)

    Article  Google Scholar 

  5. Fleming, T.R., Harrington, D.P.: Counting Processes and Survival Analysis. John Wiley & Sons, Inc, Chichester (1991)

    MATH  Google Scholar 

  6. Kaplan, E.L., Meier, P.: Nonparametric estimation from incomplete observations. Journal of the American Statistical Association 5, 457–481 (1958)

    Article  MathSciNet  Google Scholar 

  7. Koronacki, J., Cwik, J.: Statistical learning systems. Wydawnictwa Naukowo-Techniczne, Warsaw (2005) (in Polish)

    Google Scholar 

  8. Krȩtowska, M.: Random forest of dipolar trees for survival prediction. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 909–918. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Krȩtowska, M.: Ensemble of dipolar neural networks in application to survival data. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 78–88. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Krȩtowska, M.: Prognostic abilities of dipoles based ensembles comparative analysis. Zeszyty Naukowe Politechniki Bialostockiej. Informatyka 4, 73–83 (2009)

    Google Scholar 

  11. Lapuerta, P., Azen, S.P., LaBree, L.: Use of neural networks in predicting the risk of coronary artery disease. Computers and Biomedical Research 28, 38–52 (1995)

    Article  Google Scholar 

  12. Ripley, R.M.: Neural networks for breast cancer prognosis. PhD thesis, Department of Engineering Science, University of Oxford (1998)

    Google Scholar 

  13. Schemper, M.: Predictive accuracy and explained variation. Statistics in Medicine 22, 2299–2308 (2003)

    Article  Google Scholar 

  14. Schemper, M., Henderson, R.: Predictive accuracy and explained variation in Cox regression. Biometrics 56, 249–255 (2000)

    Article  MATH  Google Scholar 

  15. Xiang, A., Lapuerta, P., Ryutov, A., Buckley, J., Azen, S.: Comparison of the performance of neural network methods and Cox regression for censored survival data. Computational Statistics & Data Analysis 34, 243–257 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krȩtowska, M. (2010). The Influence of Censoring for the Performance of Survival Tree Ensemble. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artifical Intelligence and Soft Computing. ICAISC 2010. Lecture Notes in Computer Science(), vol 6114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13232-2_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13232-2_64

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13231-5

  • Online ISBN: 978-3-642-13232-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics