Nothing Special   »   [go: up one dir, main page]

Skip to main content

Approximate Neural Economic Set-Point Optimisation for Control Systems

  • Conference paper
Artifical Intelligence and Soft Computing (ICAISC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6114))

Included in the following conference series:

  • 1999 Accesses

Abstract

This paper describes a neural approach to economic set-point optimisation which cooperates with Model Predictive Control (MPC) algorithms. Because of high computational complexity, nonlinear economic optimisation cannot be repeated frequently on-line. Alternatively, an additional steady-state target optimisation based on a linear or a linearised model and repeated as often as MPC is usually used. Unfortunately, in some cases such an approach results in constraint violation and numerical problems. The approximate neural set-point optimiser replaces the whole nonlinear economic set-point optimisation layer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blevins, T.L., Mcmillan, G.K., Wojsznis, M.W.: Advanced control unleashed. ISA (2003)

    Google Scholar 

  2. Brdys, M., Tatjewski, P.: Iterative algorithms for multilayer optimizing control. Imperial College Press, London (2005)

    Book  MATH  Google Scholar 

  3. Findeisen, W.M., Bailey, F.N., Brdyś, M., Malinowski, K., Tatjewski, P., Woźniak, A.: Control and coordination in hierarchical systems. J. Wiley and Sons, Chichester (1980)

    MATH  Google Scholar 

  4. Haykin, S.: Neural networks – a comprehensive foundation. Prentice-Hall, Englewood Cliffs (1999)

    MATH  Google Scholar 

  5. Kassmann, D.E., Badgwell, T.A., Hawkins, R.B.: Robust steady-state target calculation for model predictive control. AIChE Journal 46, 1007–1024 (2000)

    Article  Google Scholar 

  6. Ławryńczuk, M., Marusak, P., Tatjewski, P.: Piecewise linear steady-state target optimization for control systems with MPC: a case study. In: The 17th IFAC World Congress, Seoul, South Korea, DVD-ROM, paper 3204, pp. 13169–13174 (2008)

    Google Scholar 

  7. Ławryńczuk, M., Marusak, P., Tatjewski, P.: Cooperation of model predictive control with steady-state economic optimisation. Control and Cybernetics 37, 133–158 (2008)

    MATH  MathSciNet  Google Scholar 

  8. Ławryńczuk, M.: Neural models in computationally efficient predictive control cooperating with economic optimisation. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D.P. (eds.) ICANN 2007. LNCS, vol. 4669, pp. 650–659. Springer, Heidelberg (2007)

    Google Scholar 

  9. Maciejowski, J.M.: Predictive control with constraints. Prentice-Hall, Harlow (2002)

    Google Scholar 

  10. Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11, 733–764 (2003)

    Article  Google Scholar 

  11. Soroush, M., Valluri, S., Nehranbod, N.: Nonlinear control of input-constrained systems. Computers and Chemical Engineering 30, 158–181 (2005)

    Article  Google Scholar 

  12. Tatjewski, P.: Advanced control and on-line process optimization in multilayer structures. Annual Reviews in Control 32, 71–85 (2008)

    Article  Google Scholar 

  13. Tatjewski, P.: Advanced control of industrial processes, Structures and algorithms. Springer, London (2007)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ławryńczuk, M., Tatjewski, P. (2010). Approximate Neural Economic Set-Point Optimisation for Control Systems. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artifical Intelligence and Soft Computing. ICAISC 2010. Lecture Notes in Computer Science(), vol 6114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13232-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13232-2_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13231-5

  • Online ISBN: 978-3-642-13232-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics