Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Experimental Comparison of Different Heuristics for the Master Bay Plan Problem

  • Conference paper
Experimental Algorithms (SEA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6049))

Included in the following conference series:

Abstract

Different heuristics for the problem of determining stowage plans for containerships, that is the so called Master Bay Plan Problem (MBPP), are compared. The first approach is a tabu search (TS) heuristic and it has been recently presented in literature. Two new solution procedures are proposed in this paper: a fast simple constructive loading heuristic (LH) and an ant colony optimization (ACO) algorithm.

An extensive computational experimentation performed on both random and real size instances is reported and conclusions on the appropriateness of the tested approaches for the MBPP are drawn.

This work has been developed within the research project “Container import and export flow in terminal ports: decisional problems and efficiency analysis” PRIN 2007j494p3_005, Italy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ambrosino, D., Sciomachen, A., Tanfani, E.: Stowing a containership: The Master Bay Plan problem. Transportation Research 38, 81–99 (2004)

    Article  Google Scholar 

  2. Ambrosino, D., Sciomachen, A., Tanfani, E.: A decomposition heuristics for the container ship stowage problem. Journal of Heuristics 12, 211–233 (2006)

    Article  MATH  Google Scholar 

  3. Ambrosino, D., Anghinolfi, D., Paolucci, M., Sciomachen, A.: A new three-step heuristic for the master bay plan problem. Maritime Economics & Logistics, Special issue on OR models in Maritime Transport and Freight Logistics 11(1), 98–120 (2009)

    Google Scholar 

  4. Anghinolfi, D., Paolucci, M.: A new ant colony optimization approach for the single machine total weighted tardiness scheduling problem. International Journal of Operations Research 5(1), 1–17 (2008)

    MathSciNet  Google Scholar 

  5. Avriel, M., Penn, M., Shpirer, N.: Container ship stowage problem: complexity and connection to the colouring of circle graphs. Discrete Applied Mathematics 103, 271–279 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen, C.S., Lee, S.M., Shen, Q.S.: An analytical model for the container loading problem. European Journal of Operation Research 80(1), 68–76 (1995)

    Article  MATH  Google Scholar 

  7. Dorigo, M., Blum, C.: Ant colony optimization theory: A survey. Theoretical Computer Science 344, 243–278 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation 1, 53–66 (1997)

    Article  Google Scholar 

  9. Dorigo, M., Stützle, T.: The ant colony optimization metaheuristics: algorithms, applications and advances. In: Glover, F., Kochenberger, G. (eds.) Handbooks of metaheuristics. Int. Series in Operations Research & Man. Science, vol. 57, pp. 252–285. Kluwer, Dordrecht (2002)

    Google Scholar 

  10. Imai, A., Nishimura, E., Papadimitriu, S., Sasaki, K.: The containership loading problem. International Journal of Maritime Economics 4, 126–148 (2002)

    Article  Google Scholar 

  11. Stahlbock, R., Voss, S.: Operations research at container terminal: a literature update. OR Spectrum 30, 1–52 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Steenken, D., Voss, S., Stahlbock, R.: Container terminal operation and Operations Research - a classification and literature review. OR Spectrum 26, 3–49 (2004)

    Article  MATH  Google Scholar 

  13. Stützle, T., Hoos, H.H.: Max-min ant system. Future Generation Computer System 16, 889–914 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ambrosino, D., Anghinolfi, D., Paolucci, M., Sciomachen, A. (2010). An Experimental Comparison of Different Heuristics for the Master Bay Plan Problem. In: Festa, P. (eds) Experimental Algorithms. SEA 2010. Lecture Notes in Computer Science, vol 6049. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13193-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13193-6_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13192-9

  • Online ISBN: 978-3-642-13193-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics