Abstract
The Hamiltonian cycle problem (HCP) is an important combinatorial problem with applications in many areas. While thorough theoretical and experimental analyses have been made on the HCP in undirected graphs, little is known for the HCP in directed graphs (DHCP). The contribution of this work is an effective algorithm for the DHCP. Our algorithm explores and exploits the close relationship between the DHCP and the Assignment Problem (AP) and utilizes a technique based on Boolean satisfiability (SAT). By combining effective algorithms for the AP and SAT, our algorithm significantly outperforms previous exact DHCP algorithms including an algorithm based on the award-winning Concorde TSP algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Angluin, D., Valiant, L.G.: Fast Probabilistic Algorithms for Hamiltonian Circuits and Matchings. J. Comput. System. Sci. 18(2), 155–193 (1979)
Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: The Traveling Salesman Problem. A Computational Study. Princeton University Press, Princeton (2006)
Bang-Jensen, J., Gutin, G.: Digraphs: Theory, Algorithms and Applications, ch. 5. Springer, London (2008), http://www.cs.rhul.ac.uk/books/dbook/
Bollobás, B., Fenner, T.I., Frieze, A.M.: An Algorithm for Finding Hamiltonian Paths and Cycles in Random Graphs. Combinatorica 7(4), 327–341 (1987)
Christofides, N.: Graph Theory – An Algorithmic Approach. Academic Press, New York (1975)
Chvátal, V.: Hamiltonian Cycles. In: Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B. (eds.) The Traveling Salesman Problem. A Guided Tour of Combinatorial Optimization, ch. 11. John Wiley & Sons, Chichester (1985)
Eén, N., Sörensson, N.: An Extensible SAT-Solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)
Frieze, A.M.: Finding Hamiltonian Cycles in Sparse Random Graphs. J. Combin. Theory Ser. B 44, 230–250 (1988)
Frieze, A.M.: An Algorithm for Finding Hamilton Cycles in Random Directed Graphs. J. Algorithms 9, 181–204 (1988)
Frieze, A.M., Suen, S.: Counting Hamilton cycles in random directed graphs. Random Structures Algorithms 9, 235–242 (1992)
Glover, F., Gutin, G., Yeo, A., Zverovich, A.: Construction Heuristics for the Asymmetric TSP. European J. Oper. Res. 129, 555–568 (2001)
Goldengorin, B., Jäger, G., Molitor, P.: Tolerance Based Contract-or-Patch Heuristic for the Asymmetric TSP. In: Erlebach, T. (ed.) CAAN 2006. LNCS, vol. 4235, pp. 86–97. Springer, Heidelberg (2006)
Gould, R.J.: Updating the Hamiltonian Problem – a Survey. J. Graph Theory 15(2), 121–157 (1991)
Grebinski, V., Kucherov, G.: Reconstructing a Hamiltonian Circuit by Querying the Graph: Application to DNA Physical Mapping. IR 96-R-123, Centre de Recherche en Informatique de Nancy (1996)
Henderson, R., Apodaca, E.: A Knight of Egodeth: Zen Raptured Quietude. Book Surge Publishing (2008)
Jin, H., Han, H., Somenzi, F.: Efficient Conflict Analysis for Finding All Satisfying Assignments of a Boolean Circuit. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 287–300. Springer, Heidelberg (2005)
Johnson, D.S., Gutin, G., McGeoch, L.A., Yeo, A., Zhang, W., Zverovich, A.: Experimental Analysis of Heuristics for the ATSP. In: Gutin, G., Punnen, A.P. (eds.) The Traveling Salesman Problem and Its Variations, ch. 10. Kluwer, Dordrecht (2002)
Jonker, R., Volgenant, A.: Transforming Asymmetric into Symmetric Traveling Salesman Problems. Oper. Res. Lett. 2(4), 161–163 (1983)
Jonker, R., Volgenant, A.: A Shortest Augmenting Path Algorithm for Dense and Sparse Linear Assignment Problems. Computing 38, 325–340 (1987)
Karp, R.M.: Reducibility Among Combinatorial Problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum, New York (1972)
Karp, R.M., Steele, J.M.: Probabilistic Analysis of Heuristics. In: Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B. (eds.) The Traveling Salesman Problem. A Guided Tour of Combinatorial Optimization, ch. 6. John Wiley & Sons, Chicester (1985)
Kelly, L.: Hamilton Cycles in Directed Graphs. PhD Thesis, University of Birmingham, United Kingdom (2007)
Komlós, M., Szemerédi, E.: Limit Distribution for the Existence of a Hamiltonian Cycle in a Random Graph. Discrete Math. 43, 55–63 (1983)
Kyek, O., Parberry, I., Wegener, I.: Bounds on the Number of Knight’s Tours. Discrete Appl. Math. 74(2), 171–181 (1997)
Lynce, I., Marques-Silva, J.: Efficient Haplotype Inference with Boolean Satisfiability. In: Proc. 21st National Conference on Artificial Intelligence (AAAI). AAAI Press, Menlo Park (2006)
Martello, S.: An Enumerative Algorithm for Finding Hamiltonian Circuits in a Directed Graph. ACM Trans. Math. Software 9(1), 131–138 (1983)
McDiarmid, C.J.H.: Cluster Percolation and Random Graphs. Math. Program. Stud. 13, 17–25 (1980)
Pósa, L.: Hamiltonian Circuits in Random Graphs. Discrete Math. 14, 359–364 (1976)
Stojaković, M., Szabó, T.: Positional Games on Random Graphs. Random Structures Algorithms 26(1-2), 204–223 (2005)
Vandegriend, B.: Finding Hamiltonian Cycles: Algorithms, Graphs and Performance. Master Thesis, University of Alberta, Canada (1998)
8th DIMACS Implementation Challenge: The Traveling Salesman Problem, http://www.research.att.com/~dsj/chtsp/
The Hamiltonian Page by Gutin, G., Moscato, P.: http://www.ing.unlp.edu.ar/cetad/mos/Hamilton.html
The Stony Brook Algorithm Repository by Skiena, S.: http://www.cs.sunysb.edu/~algorith/files/hamiltonian-cycle.shtml
Source code of [2](Concorde), http://www.tsp.gatech.edu/concorde.html
Source code of [7] (MiniSat), http://minisat.se
Source code of [19], http://www.magiclogic.com/assignment.html
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jäger, G., Zhang, W. (2010). A SAT Based Effective Algorithm for the Directed Hamiltonian Cycle Problem. In: Ablayev, F., Mayr, E.W. (eds) Computer Science – Theory and Applications. CSR 2010. Lecture Notes in Computer Science, vol 6072. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13182-0_20
Download citation
DOI: https://doi.org/10.1007/978-3-642-13182-0_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13181-3
Online ISBN: 978-3-642-13182-0
eBook Packages: Computer ScienceComputer Science (R0)