Abstract
This paper deals with the problem of maneuvering target tracking in wireless tracking service. It results in a mixed linear/non-linear Models estimation problem. For maneuvering tracking systems, these problems are traditionally handled using the extended Kalman filter or Particle filter. In this paper, Marginalized Particle Filter is presented for applications in such problem. The algorithm marginalized the linear state variables out from the state space. The nonlinear state variables are estimated by the Particle Filter and the rest are estimated with the result of the estimation of the nonlinear state variables by the Kalman Filter. Simulation results shows that the Marginalized Particle Filter guarantees the estimation accuracy and reduces computational times compare to the Particle filer and the Extending Kalman Filter in maneuver target tracking application.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Yin, J.-j., Zhang, J.-q., Klass, M.: The Marginal Rao-Blackwellized Particle Filter for mixed linear/non-linear state space models. Chinese Journal of Aeronautics 20(4), 346–352 (2007)
Xue-yuan, Ma, G.-f., Hu, Q.-l.: Satellite attitude estimation based on marginalized particle filter. Control and Decision 22(1), 39–44 (2007)
Zhu, Z.-y., Dai, X.-Q.: Marginalized Particle Filter for maneuver target tracking. Journal of WuHan University of Technology 30(6), 118–121 (2008)
Schoh, T., Gustafsson, F., Nordlund, J.: Marginalized Particle Filters for mixed linear/nonlinear state-space models. IEEE Transaction of signal processing 53(7), 2279–2289 (2005)
Liang, J., Qiao, l.-y., Peng, X.-y.: Fault Detection Based on SI R State Estimation and Smoothed Residual. Chinese Journal of Electronics 35(12A), 32–36 (2007)
Gordon, N., Salmond, D.: Novel approach to nonlinear and Non-Gaussian Bayesian state estimation. Proc. of Institute Electric Engineering 140(2), 107–113 (1993)
Maskell, S., Briers, M., Wright, R.: Tracking using a radar and a problem specific proposal distribution in a particle filter. IEEE Proceedings, Sonar and Navigation 152(5), 315–322 (2005)
Kim, S., Holmstrom, L., Mcnames, J.: Multiharmonic tracking using Marginalized Particle Filters. In: 30th Annual International IEEE EMBS Conference, vol. 20(25), pp. 29–33 (2008)
Wang, L., Li, X.-b.: The improvement of antenna servo system of launcher based on Singer model. Tactical Missile Technology (1), 29–32 (2008)
Tafti, A.D., Sadati, N.: A novel adaptive tracking algorithm for fusion by neural network. In: The International Conference on Computer as a Tool, vol. 9(12), pp. 818–822 (2007)
Chen, X.: The algorithm research of Particle Filter location track for Wimax in high dynamic condition. Chongqing University of post and telecom, Chongqing (2007)
Bard, J.D., Ham, F.M., Jones, W.L.: An algebraic solution to the time difference of arrival equations. Proceedings of the IEEE 11(4), 313–319 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhou, F., He, Wj., Fan, Xy. (2010). Marginalized Particle Filter for Maneuvering Target Tracking Application. In: Bellavista, P., Chang, RS., Chao, HC., Lin, SF., Sloot, P.M.A. (eds) Advances in Grid and Pervasive Computing. GPC 2010. Lecture Notes in Computer Science, vol 6104. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13067-0_56
Download citation
DOI: https://doi.org/10.1007/978-3-642-13067-0_56
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13066-3
Online ISBN: 978-3-642-13067-0
eBook Packages: Computer ScienceComputer Science (R0)